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Abstract 

We investigate the development of theories of types and computability 
via realizability. 

In the first part of the thesis, we suggest a general notion of realizability, 
based on weakly closed partial cartesian categories, which generalizes the 
usual notion of realizability over a partial combinatory algebra. We show 
how to construct categories of so-called assemblies and modest sets over 
any weakly closed partial cartesian category and that these categories of 
assemblies and modest sets model dependent predicate logic, that is, first- 
order logic over dependent type theory. We further characterize when a 
weakly closed partial cartesian category gives rise to a topos. Scott's cate- 
gory of equilogical spaces arises as a special case of our notion of realizability, 
namely as modest sets over the category of algebraic lattices. Thus, as a 
consequence, we conclude that the category of equilogical spaces models 
dependent predicate logic; we include a concrete description of this model. 

In the second part of the thesis, we study a notion of relative com- 
putability, which allows one to consider computable operations operating 
on not necessarily computable data. Given a partial combinatory algebra 
A, which we think of as continuous realizers, with a subalgebra A$ C A, 
which we think of as computable realizers, there results a realizability topos 
RT(A,A$), which one intuitively can think of as having "continous ob- 
jects and computable morphisms". We study the relationship between this 
topos and the standard realizability toposes RT(A) and RT(Aji) over A and 
RT^II). In particular, we show that there is a localic local map of toposes 
from RT(A, A$) to RT(yljj). To obtain a better understanding of the relation- 
ship between the internal logics ofRT(A,AA and RT(A$), we then provide 
a complete axiomatization of arbitrary local maps of toposes. Based on this 
axiomatization we investigate the relationship between the internal logics of 
two toposes connected via a local map. Moreover, we suggest a modal logic 
for local maps. Returning to the realizability models we show in particular 
that the modal logic for local maps in the case of RT(A,A$) and RT(y4j) 
can be seen as a modal logic for computability. Moreover, we characterize 
some interesting subcategories of RT(A,A$) (in much the same way as as- 
semblies and modest sets are characterized in standard realizability toposes) 
and show the validity of some logical principles in RT(A,A$). 
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Chapter 1 

Introduction 

In this thesis we are concerned with developing theories of types and com- 
putability via realizability. Briefly, this means that we develop and study 
various categories defined via notions of realizability and show how these 
can be used to model type theories and logics, especially logics to reason 
about computability. The thesis consists of two parts 

Part I      A General Notion of Realizability 

Part II      Local Realizability Toposes and a Modal Logic for Computability 

The two parts can be read independently — at the end of this introduction 
we give a more detailed overview of the dependence of the individual chap- 
ters. We now describe the background for our work and overview the results 
obtained. 

1.1    A General Notion of Realizability 

Realizability has been used successfully to give models of various logics and 
type theories in logic and computer science, see, e.g., [Tro98, Hyl82, Lon94, 
v099, BCRS98] for many recent references. Typically, the realizers are 
drawn from some untyped universe, which provides a model of untyped 
computation for realizers. Examples of such universes of realizers include the 
natural numbers with Kleene application and models of the untyped lambda 
calculus (including term models); more generally, any partial combinatory 
algebra (PCA). 

In December 1996, Dana Scott defined the category Equ of equilogical 
spaces and showed that it forms a cartesian closed category. In Equ ob- 
jects are topological To-spaces with arbitrary equivalence relations on them 
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and morphisms are equivalence classes of equivalence preserving continuous 
functions. Scott also gave an equivalent presentation of the category Equ, 
namely as partial equivalence relations over the category of algebraic lat- 
tices. The category Equ is of interest from a computer science perspective 
since it contains many subcategories of domains (as used in denotational 
semantics). 

In my study of the category Equ, I observed that it was advantageous 
to think of the setup as a generalized form of realizability, where we think of 
the category of algebraic lattices as providing a typed model of computation 
for realizers. Indeed, in a joint paper with Bauer and Scott [BBS98] we show 
how Equ provides a model of dependent type theory, proceeding by analogy 
to models constructed over PCA's. 

In this thesis we make the analogy precise and suggest a common general 
framework of which both the model in [BBS98] and also models based on 
PCA's are instances. Our general notion of realizability is embodied in the 
definition of a weakly closed partial cartesian category (WCPC-category), 
which is just a weak version of a partial cartesian closed category [RR88]. 
We prove a couple of results concerning realizability over WCPC-categories; 
in particular, we characterize when a WCPC-category gives rise to a topos 
(in a certain way). 

We then show how to construct categories of so-called assemblies and 
modest sets (partial equivalence relations) over any WCPC-category — in 
the case where the WCPC-category is obtained from a PCA, these categories 
are the usual categories of assemblies and modest sets over a PCA. 

The main results are that the categories of assemblies and modest sets 
both provide split models of dependent type theory and that they also model 
a dependent predicate logic with which one can reason about the types and 
terms in the dependent type theory. 

As a consequence, we conclude that Equ models dependent predicate 
logic over dependent type theory. In Appendix A we present this model by 
writing out explicitly what the interpretation of the calculus is. 

1.2    Local Realizability Toposes and a Modal Logic 
for Computability 

In the second part of the thesis we consider a relative notion of computability, 
developed via realizability. We now describe the motivation for this work, 
the approach we take, and then give an overview of our results. 
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1.2.1    Background and Motivation 

Suppose we wish to design a new programming language, or extend an ex- 
isting one, with a richer collection of basic types than is usually found in 
existing programming languages. For example, we might want to have a type 
of real numbers (with arbitrary precision) as a basic type, with associated 
basic operations. Such types contain elements which are not computable 
since the types contain uncountably many elements. However, it still makes 
sense to consider computable operations on such not necessarily computable 
data types. For instance, the addition of real numbers can be implemented 
by a computable operation and work correctly also for non-computable real 
numbers. Of course, we will only want to add to our programming lan- 
guage those operations that are computable, not the rest. To help us decide 
which types and which operations it makes sense to consider adding to a 
programming language, we then seek a framework in which we can study 
computable operations operating on not necessarily computable data types. 
At the same time, we are naturally interested in a framework with a rich col- 
lection of types and with an accompanying logic to reason about the types. 
We remark that even if one is not interested in programming languages, it 
is certainly of fundamental interest to have a framework in which to study 
computability of operations on a wider collection of types than the usual 
ones. 

Scott had the idea that we can consider the usual category PER(P) of 
partial equivalence relations over the graph model P of the lambda calculus 
and then ask, for a morphism /, whether it is computable by asking whether 
it is represented by a member of the sub-PCA RE, the recursively enumer- 
able graph model. This idea is a good step in the right direction since the 
category of partial equivalence relations over P contains a wide collection of 
standard mathematical spaces (the category of countably-based To-spaces 
is a full subcategory) and, moreover, asking whether a morphism is com- 
putable by asking whether it is represented by a recursively enumerable set 
is surely a sensible notion of computable. Indeed, one can define a subcat- 
egory PER(P, RE) of PER(P) which is full-on-objects and which only has 
computable morphisms, and this category provides an example of a suitable 
framework in which to study computable operations on not necessarily com- 
putable data. To obtain an expressive logic to reason about the objects and 
morphisms in PER(P, RE), it would be advantageous if this category was 
a full subcategory of a topos. It is a consequence of my results that this is 
indeed the case. 

Scott also suggested that one can obtain a model of modal logic in the 



4 Introduction 

readability style for reasoning about computability. The idea is to have 
an extra, logical operation jj on formulas <p, with formulas <p interpreted 
by subsets <p of P and with the formula #</> realized by (p n RE, i.e., by 
computable realizers. Scott showed that fj, interpreted in this way, satisfies 
the formal laws for the box operator from S4. It is a consequence of my 

results that this modal logic may be extended from the propositional case 
to predicate logic over a wide collection of types such that it can be used 

to reason about computability of operations operating on not necessarily 
computable data. 

1.2.2    Approach and Overview of Results 

Generalizing the ideas described above a bit, we are considering a situation 
where we have a PCA A, which we think of as the set of continuous realizers, 
with a sub-PCA A$ C A, which we think of as the computable realizers. 
There are many other examples besides P and RE; we describe others later 
on. 

Given A and A$ we consider the standard realizability toposes RT(yl) 
and RT(^||) [HJP80]. Very roughly speaking, we think of RT{A) as hav- 
ing continuous objects and continuous morphisms, and of RT(Ajj) as having 
computable objects and computable morphisms. We then identify a third 
category RT(A,A$), which roughly speaking represents the world of con- 
tinuous objects and computable morphisms. This category RT(A,A$) is a 
topos, the relative realizability topos on A with respect to the subalgebra 
At. 

The toposes RT(A) and RT(A{) are not particularly well-related by 
themselves; one of the purposes of the relative realizability topos RT(A,A{) 
is to remedy this defect. We show that the three toposes are related to each 
other as indicated in the following diagram, in which the three functors on 
the left leg constitute a so-called local geometric morphism, while the right 
leg is a logical morphism (a filter-quotient). 

RT(A,At) 

RT{A$j RT(A) 

Moreover, we show that the local geometric morphism is in fact localic, that 
is, RT(^4, A$) is a localic topos over RT(^4(j). 

We thus obtain an understanding of the basic categorical relationship 
between the three toposes.   Since we are chiefly interested in computable 
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morphisms, we then seek to get a deeper understanding of the relationship 
between the internal logics of the two toposes RT(A,A$) and RT^). We 
do so by axiomatizing (parts of) the relationship between RT(A,A$) and 
RT(Aft). The goal is to put axioms of one of the two toposes such that, 
given those axioms, one can reconstruct the other topos and the local map 
between them. The idea is, of course, that such an axiomatization can 
help in obtaining the better understanding of the relationship between the 

internal logics we seek. 
To make our axiomatization applicable to other examples of local maps 

(and also to avoid having to make too many detailed and complicated con- 
crete calculations with realizability toposes) we in fact give an elementary 
axiomatization of arbitrary local maps of toposes. Afterwards, we then in- 
stantiate our general theory to our particular relative realizability case. 

Thus we suggest axioms on a topos £, such that if £ satisfies these 
axioms, then we can construct a topos T and show that there is a local geo- 
metric morphism from £ to T. In our approach, £ corresponds to Yd (A, A^) 
and T corresponds to RT(Aj). This approach may be a little bit surprising: 
it is not based on assuming the existence of an internal locale in a topos, 
corresponding to RT(A)j), and then putting axioms on that locale. One ad- 
vantage of taking the point of view that we take here, that is, the viewpoint 
corresponding to that of RT(,4, A$), is that our axiomatization will be more 
general and not only apply to localic local maps but to arbitrary local maps. 
In a sense, our approach may be seen as analogous to the approach taken 
in synthetic domain theory (SDT). In SDT a category of domains is singled 
out abstractly as a full subcategory of a category of general sets. Here we 
are taking the category RT(A,A$) with continuous objects and computable 
morphisms as given and we are abstractly singling out a full subcategory of 
"computable objects," namely RT(^4u). The main result is that our axioms 
for local maps are sound and complete in the sense that, if the axioms are 
satisfied, then we indeed get a local map (completeness) and, conversely, 
given a local map, the axioms are indeed satisfied (soundness). 

Based on the axiomatic work, we describe, for any local map £ —> T, 
the connection between the internal logics of £ and T. Moreover, we derive 
a modal logic for local maps, which can be used to reason further about the 

relationship between £ and T. 
Since our original example local map is in fact localic, we then specialize 

our study of the relationships between the internal logics to the case of localic 
local maps. We show how the modal logic in this case can be phrased in 
terms of operations on an internal locale. The internal locale is local in a 
obvious sense which we describe in Chapter 9. Moreover, we define a notion 
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of local tripos and show that any local tripos gives rise to a localic local 
map of toposes and that any localic local maps of toposes arise from a local 
tripos. The approach using local triposes has the advantage over internal 
locales that it can be easier to recognize a local tripos than a local internal 
locale, as explained in Chapter 9. 

After the abstract study of local maps of toposes and their internal logic, 
we return to the relative realizability model and show how the modal logic 
is interpreted there. It turns out that it indeed is a generalization of Scott's 
original idea of a modal logic for computability mentioned in the previ- 
ous section. Moreover, we show that the local geometric morphism from 
RT(yl,,4(j) to RT(ylj|) is not open. This result can be seen as partly justi- 
fying our choice of axiomatizing local maps and not some smaller class of 
maps of toposes. We also describe how some of the standard results for 
realizability toposes concerning the double-negation topology work out in 
RT(^,^jj), and we show that RT(A,A^) can also be described as the exact 
completion of a suitable category of partitioned assemblies. 

Our work forms part of the research of the Logics of Types and Compu- 
tation group at Carnegie Mellon University [SAB+]. Indeed we see our work 
as providing a foundation for more concrete studies of the notion of relative 
computability. Here we thus stick to the abstract level of a PCA A with a 
sub-algebra A$ and only occasionally consider more concrete examples. In 
his forthcoming Ph.D.-thesis [BauOO], Andrej Bauer considers the notion of 
relative computability in the case of A = P and A$ = RE. 

1.2.3    Historical Remarks 

I learned about Scott's suggestion of the category of PER's over P as a suit- 
able category for studying computable operations on not necessarily com- 
putable data in 1997. Scott's idea of a modal operator for computability 
is from January 1998. We learned about the topos RT(A, A{j in February 
1998 from Thomas Streicher, who suggested it as a suitable framework for 
studying computable analysis. A couple of months later, however, Martin 
Hyland was kind enough to let us know that the construction of the topos 
RT(A, A$) has in fact been known for a long time [Pit81, Page 15, item (ii)]. 
Martin Hyland suggested me to show that RT(.A, A$) is localic over RT(A(j) 
(Hyland new this was the case, see the comments to Theorem 5.4.8) and 
also to try to axiomatize the local map from RT^Aj) to RT(AA. The 
elementary axiomatization of local maps was carried out jointly with Steven 
Awodey and some of the results of Part II of the thesis have been published 
in our joint paper with Awodey and Scott [ABS99]. 
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1.3    Synopsis 

The essential dependencies of the various chapters is outlined in the follow- 
ing diagram (the dotted arrow means that Chapter 6 is the motivation for 
Chapter 7, but mathematically Chapter 7 does not depend on Chapter 6). 
Part I consists of Chapters 3-4 and Appendix A and Part II consists of 
Chapters 5-10, as indicated by the dotted boxes. Note that Chapters 7-9 
can be read independently of the rest of Part II. 

1. Introduction 

2.   Preliminaries on Fibrations 
and Categorical Logic 

3.  A General Notion 
of Realizability 

for Type Theory 

4.  A General Notion 
of Realizability 

for Logic 

A.  Dependent Type 
Theory and Predicate 

Logic in Equ 

j 

5.  Preliminaries 
on 

Tripos Theory 

6.   The Relative 
Realizability 

Topos RT(A, A$) 

10.  More on the 
Relative Realizability 

Topos RT(.4, A9) 

11.   Conclusion and 
Future Work 

7.  An Elementary 
Axiomatization of 

Local Maps of Toposes 

8. Logic and 
Local Maps 
of Toposes 

9.  Logic and 
Localic Local 

Maps of Toposes 

We now outline the content of the remaining chapters. 
In Chapter 2 we recall some of the basic theory of fibrations and cate- 

gorical logic, which we make use of in the remainder of the thesis. 
In Chapter 3 we begin by recalling some of the theory of categories 

of partial maps [RR88]. Based on this theory we define the notion of 
a WCPC-category.   We define a notion of pretripos and show that every 
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WCPC-category gives rise to a pretripos, which can then be used to define 
categories of so-called assemblies and modest sets over the WCPC-category. 
We prove that the categories of assemblies and modest sets provide split 
models of dependent type theory. In the section on realizability pretriposes 
and universal objects we characterize when a WCPC-category gives rise to 
a topos and we describe how some of the constructions used in Part I are 
related to constructions used in Part II of the thesis. 

In Chapter 4 we extend the results of the previous chapter by showing 
that the categories of assemblies and modest sets over a WCPC-category 
provide models of dependent predicate logic. We also show how to model 
subset and quotient types.  ' 

In Chapter 5 we recall some of the theory of triposes, which we shall 
make use of in the subsequent chapters. We also include a couple of results 
on triposes, which apparently have not been published before, see Proposi- 
tion 5.4.7 and Theorem 5.4.8. We recall how the standard realizability tripos 
over a PCA is defined. Furthermore, we recall the definition of what we term 
the relative realizability tripos over a PCA A with respect to a sub-PCA A%. 

In Chapter 6 we study the relationship between RT(A,A^j, RT(Ai), 
and RT(^). We prove that there is a localic local geometric morphism from 
RT(A, Atj) to RT(^Ö) (Theorem 6.2.3) and show, using results of Pitts, that 
RT{A) is a filter-quotient of RT(,4,ylB) (Section 6.1). 

In Chapter 7 we present an elementary axiomatization of local maps 
of toposes. We recall the definition of a general local map from [Law86, 
Law89, JM89]. We give an overview of our approach to the axiomatization 
in Section 7.2 — the approach is based on results of Kelly and Lawvere 
concerning orthogonal and coorthogonal subcategories and essential local- 
izations of toposes [KL89] — and then proceed to present the axioms after 
developing a couple of needed definitions and properties. We show that 
the axioms are sound and complete in a suitable sense (Theorems 7.3.41 
and 7.3.44). 

In Chapter 8 we study the relationship between the internal logics 
of two toposes connected via a local map. In doing so we make use of 
our axiomatic study from the previous chapter, and we extend, in a way, 
Lawvere's picture of a local map as an adjoint cylinder (see Chapter 7) to 
also cover the internal logics. Moreover, we describe a modal logic for local 
maps. One can think of this modal logic as the internal logic of the given 
local map. We include a couple of examples of applications of the modal 
logic. 

In Chapter 9 we specialize the treatment of the previous chapter to 
localic local maps. Two additional points of view arise from the assumption 
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that the local map is localic. First we take the point of view of tripos theory 
and show that the modal logic resulting from the localic local map is just 
a particular case of tripos logic. We define a notion of local tripos and 
show that any local tripos gives rise to a localic local map of toposes and, 
moreover, that any localic local map of toposes comes from a local tripos. 
The actual tripos that results from a localic local map is naturally one given 
on an internal locale (complete Heyting algebra). Thus we next take the 
point of view of internal locale theory and describe the modal operators as 
certain easily given internal maps on an internal locale. We further observe 
that a substantial part of the modal logic follows from very weak assumptions 
(whenever one has an internal locale in some topos). 

In Chapter 10 we then finally return to the relative readability topos 

RT(J4, ^4[j)- We snow h°w the abstract definitions used in the axiomatic 
treatment of local maps are instantiated in RT(A,A$). Moreover, we show 
how the modal logic for localic local maps is interpreted via the local map 
from RT(A, A$) to RT(AÖ). We show that the local map from RT(A, A$) to 
RT(.4jj) is not open (so does not preserve all of first-order logic). We also 
use the chapter to collect some other specific results regarding RT(A,A$), 
including a treatment of the double-negation topology and the fact that 
RT(J4, .Ap) can be seen as an exact completion. Most of these results are 
simply obtained by verifying that known results for standard readability 
toposes can be carried over to the relative realizability setting. 

In Chapter 11 we finally conclude and present some suggestions for 

future work. 

1.4    Prerequisites and Guidelines 

We assume familiarity with basic category theory as in [Mac71]. Some ac- 
quaintance with dependent type theory, (intuitionistic) logic, and categor- 
ical logic will also be useful. For the second part of the thesis we further 
assume familiarity with basic topos theory [MM92, Joh77] (for the most 
part, [MM92] suffices) and with (internal) locales / complete Heyting alge- 

bras [FS79, Joh82]. 
Some of the chapter introductions will require more background than the 

chapter itself; that is, various notions used in the introduction of a chapter 
will be recalled and defined in the chapter itself. In the beginning of the 
thesis we will spell out more details than we will towards the end. We 
should also mention that we do not always refer to the original source of 
some result; in particular, for background material we seek to refer to easily 
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accessible material. Finally, when we recall standard preliminary material 
(in particular, in Chapters 2 and 5 and in Section 3.6.1) we state at the 
beginning of the relevant chapter/section which sources we use; we do not 
explicitly mark every single recalled definition or result as such. 



Chapter 2 

Preliminaries on Fibrations 
and Categorical Logic 

In this chapter we recall some background material on fibrations and cat- 
egorical logic which we use in the sequel. In Section 2.1 we describe our 
notational conventions for basic category theory and logic. In Section 2.2 
we recall the basic definitions and results from fibred category theory that 
we shall need. Furthermore, we give a very rough sketch of how logics 
can be interpreted in suitable fibrations and recall a categorical descrip- 
tion of logic. Our presentation is based very closely on [Jac99] to which 
the reader is referred to for further background and details. There are 
several other good introductory sources on fibrations and categorical logic 
besides [Jac99], see, e.g., [Ben85, Bor94b, Pho93] for material on fibrations 
and [Her93, Pav90, Tay86, Tay99, Pho93, Cro93] for categorical models of 
type theory and logic in fibred and indexed categories. 

Readers familiar with fibrations and categorical logic as in [Jac99] may 
skip this chapter. 

2.1    Notational Preliminaries 

In this section we describe our notational conventions for category theory 
and logic. We follow [Jac99]. 

2.1.1     Category Theory 

Arbitrary categories are written as A, B, C, ... in open face. Arbitrary 
toposes are written as £, T, ...   in calligraphy. Specific categories, like Set, 

11 
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are written in bold face. We generally use capital letters for objects and 
write X 6 C to express that X is an object of C. We generally use lower 
case letters for morphisms (also called maps, or arrows) of a category. The 
homset C(A", Y) is the collection of morphisms from X to Y in a category 
C. Unless otherwise stated, categories are assumed to be locally small, that 
is, with C{X,Y) a set (not a proper class), for all objects X and Y in C. 
We also sometimes write Home (A', Y) for C(A",y). The notations f: X -> 

Y and A >-Y are also used for / G C(X,Y).   We write A >-> Y for 
monomorphisms and A' -» Y for epimorphisms. The opposite of a category 
C is written C°p and equivalence of categories A and B is written A ~ B. 

The identity morphism on an object X is written idx or simply id. 
Composition of morphisms /: X -> Y and g: Y -> Z is written g o f 
or simply gf. A natural transformation between functors F, G: A ->• B is 
written with a double arrow as a: F => G. We generally use 1 for a terminal 
object. Binary products are written X X Y with projections w: A' X Y -> X 
and 71-': A x Y ->■ Y and tuples (/, g):Z->Xx Y for /: Z ->■ X and g: Z -> 
Y. We often write S or 5(X) or £A' for the diagonal (id, id): X -> XxX, and 
S or <5(7, X) for the "parameterized diagonal" (id, K'): Ix X -> (7 x A") x A, 
which duplicates A", with parameter 7. The exponent object of objects A' 
and Y in a cartesian closed category (CCC) is denoted Yx or A =^> Y. The 
evaluation map is written Ev: Yx x X -» Y and the abstraction map is 
written A(/): Z -»■ YA' for /: Z X A -» y. 

An initial object is usually denoted 0. For binary coproducts we write 
X + Y with coprojections K: X -> X + Y and K': Y -> X + Y and cotuples 
[f,g]: A + y -»■ Z where f:X->Z and #: y -»■ Z. 

For functors F and G in an adjunction FHG(F left adjoint to G), 
the natural isomorphism B(FX, Y) = A(A, GY) is often written as a bijec- 
tive correspondence between morphisms /: FX ->■ Y and 5: X -» Gl' via 
double lines: 

FA—^y 

X—+-GY 

The transpose of /: FA -> Y is often written as f:X -> Gy and the 
transpose of #: A' -» Gy is often written as 5: FAA ->• Y. 

For the rest we follow usual categorical notation, as in the standard 
reference [Mac71]. 



2.2 Preliminaries on Fibrations and Categorical Logic 13 

2.1.2    Logic 

We standardly use many-typed (= many-sorted) logic and we do not restrict 
ourselves to logic over simple type theory, but also allow logics over depen- 
dent type theory. Contexts of variable declarations will be written explicitly 
at all times, e.g., we write 

n:N|?i + 5 = 7hrc = 2 

for a logical entailment. Here | is used to separate the type theoretic context 
n: N from the logical context n + 5 = 7. The reason for carrying along 
these contexts comes from their important categorical role as indices (in the 
fibrational terminology, the context indicates in which fibre we are). 

We write JL for falsum (falsehood), V for disjunction, T for truth, A for 
conjunction, and D for implication. Negation -i will be defined as -up = 
<p D _L. Existential and universal quantification will be written in typed 
form 3x: a. <p and V.T : a. (p. All these proposition formers will be used with 
their standard rules. Higher-order logic will be described via a distinguished 
(constant) type Prop: Type, which enables quantification over propositions, 
as in Vet: Prop. (p. 

Unless otherwise mentioned, logics will always be intuitionistic. 

2.2    Preliminaries  on Fibrations and  Categorical 
Logic 

2.2.1    Fibrations 

Let p: E -> B be a functor. For an object / £ B, the fibre or fibre category 
E/ over I is the category with 

objects l£E for which pX - I. 

morphisms    X ->• Y in E/ are morphisms /: X -> Y in E for which 
pf - id i. 

An object X G E satisfying pX = I is said to be above /; similarly, a 
morphism / in E with pf = u is said to be above u. A morphism in E is 
said to be vertical if it is above some identity morphism in B. For X, Y £ E 
and u: pX —>■ pY in B, we sometimes write 

Eu (X, Y) = { f: X -t Y in E | / is above u } C E(X, Y). 
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Definition 2.2.1. Let p: E -» B be a functor. 

1. A morphism f: X -> Y is cartesian over u: I -> J if pf = « and if 
every g: Z -+Y in E for which one has pg = uow for some w: pZ -> /, 
uniquely determines an /i: Z ->• A" in E above w with foh = g. In a 
diagram: 

in E 

m 

Since a morphism /: A" -* Y can only be cartesian over its underlying 
map pf in B, we just call / cartesian if this is the case. 

2. The functor p: E -» B is a fibration if for every Y £ E and u: I -» 
pY in B, there is a cartesian morphism /: A ->■ Y in E above u. 
Sometimes a fibration will be called a fibred category or a category 
(fibred) over B. 

E 
We often write \p for a fibration p: E ->■ B and refer to E as the total 

B 
category and to B as the base category. When the functor p is clear from 

E 
context, we often simply write J, (pronounced "E over B"). 

E 
We often say that a cartesian morphism /: A —» Y over u: I ->■ pY is 

a cartesian lifting of u. Cartesian liftings are unique up-to-isomorphism: 
if / and /' are both cartesian over the same map, then there is a unique 
vertical isomorphism <p with f'otp = f (indeed we have that M/J(p(-),u) = 
E/y (-,/)). 

We write B~* for the arrow category of B with 

objects morphisms ip: X —Y I in B. 
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morphisms    (<p: X -> 7) -4 (ip: Y -4 J) are pairs of morphisms (w, /) 
with u: I -> J and /: X —> Y for which the diagram 

commutes. 

We write cod: B>~* -4 B for the codomain functor. As the reader can verify, 
the functor cod is a fibration if and only if B has pullbacks. We refer to 
it as the codomain fibration on B. The fibre category over 7 is the slice 
category B/7 and cartesian morphisms in B-*' coincide with pullback squares 
in B. 

We write Mono (B) for the full subcategory of B-^ on the objects ip: X —> 
I which are monomorphisms in B.   If B has pullbacks, then the restricted 

Mono (B) 
codomain functor      \.      is again a fibration since the pullback of a monomor- 

B 

phism is a monomorphism.   Note that all the fibres of Mono (B) are pre- 
ordered categories.  Such a fibration for which all the fibres are preorders, 
will be called a fibred preorder. 

We write Sub(B) for the category obtained from Mono (B)  by taking 
Sub(B) 

subobjects as objects. If B has pullbacks,     \,     is referred to as the fibra- 
B 

tion of subobjects or the subobject fibration of B. The fibres Sub (7) 
over objects 7 G B are partial orders. 

Cloven and Split Fibrations 

E 
Let \p be a fibration. Then for each u: 7 -> J in the base B and each A'eE 

B 
above J, there is a cartesian lifting • —> X. Assume now that we choose for 
each such u a specific cartesian lifting and write it as 

ü(X): u*{X)^X. 

Having made such choices, every map u: I —> J in B determines a functor 
u*: Ej —»■ E/. For an object X £ Ej, one takes u*{X) to be the domain 
of the chosen cartesian lifting u(X): u*(X) -4 X. For a map /: X —> Y 
in Ej, one takes «*(/) to be the unique map from u*(X) to u*(Y) with 
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ii{Y) ou*(f) = / o u(X). Such functors u* are referred to as reindexing 
functors, substitution functors , relabelling functors , or sometimes 
also as change-of-base functors or pullback functors . We mostly use 
the first two names. 

For two composable morphisms 

r v r- -*■ J > A 

in B, in general one does not have equality u*v* = (vou)* but only a natural 
isomorphism 

u*v* =» {vou)*. (2.1) 

Likewise, there are natural isomorphisms 

id =$► {id)*. (2.2) 

These natural transformations satisfy certain coherence conditions, but we 
shall not go into that here [Jac99]. 

Definition 2.2.2. 

1. A fibration is called cloven if it comes equipped with a cleavage, 
that is, with a choice of cartesian liftings. This cleavage then induces 
substitution functors u* between the fibres, as above. 

2. A fibration is called split if the induced substitution functors are such 
that the canonical natural transformations in (2.1) and (2.2) are iden- 
tities: 

id =(*</)*        and        iiV = (»o«)*. 

The cleavage involved is then often called a splitting. 

If B is a category with chosen pullbacks, then the codomain fibration on 
B is cloven, but in general it is not split. The subobject fibration, on the 
other hand, is trivially split since the fibres are partial orders. We shall see 
more examples of split fibrations in Chapter 3. 

Indexed Categories 

Definition 2.2.3. 
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1. A B-indexed  category is a pseudo functor \I>: Bop -» Cat.   It 
consists of a mapping which assigns to each object I e B a category 
*(/) and to each morphism u: I ->• J a functor *(«): Ü>(J) ->■ *(/), 
often simply denoted w* when no confusion arises. Additionally, a 
pseudo-functor involves natural isomorphisms 

nT: id =>• («rf/)* 

fj,UtV: u*v* =>• (vou)* 

which satisfy the coherence conditions: 

for I e B 

for I^+J—^K in B 

idi)*u 
Wit,id j 

u*(idj)< 

for /—!UJ 

w*t>W > u*(w o v)" 

(v o u)*w* 

for I-H+J-O+K- 

l^VOU,W 
(w o v o w)* 

2. A split (also called strict) B-indexed category is just a functor 
*£>: Bop -> Cat; it is an indexed category for which the 77's and /i's in 
item 1 are identities. 

E 
Proposition 2.2.4. Let \p  be a fibration with a cleavage. The assignment 

L i-» E7        and       u •->■ fifte substitution functor u*) 

determines a B-indexed category.   This indexed category is split whenever 

the cleavage of p is a splitting. 

Definition 2.2.5 (Grothendieck construction). Let *: Bop -» Cat be 
an indexed category. The Grothendieck completion JB \I> (or simply J \P) 

of \P is the category with 

objects (I,X) where I G B and X <E *(/). 

morphisms    (/,-X") ->• («/,Y) are pairs («,/) with u: I -» J in B and 
/: X -» ti*(Y) = *(«)(y) in *(/). 
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Composition and identities in J $ involve the isomorphisms n and // from 
Definition 2.2.3. The identity on (7, A) is the pair («/, 777(A)), where 

VI- idV(l) => ("*/)*• 

And composition in  f \I> of 

(/, A) >■ (J, y) ^ (A, Z) 

is defined as 

7 > J > A 

X j-~ „•(!•) —^ „-„-(Z) —-JL-^ („„ „).(Z) 

The required equalities for identity and composition follow from the coher- 
ence diagrams in Definition 2.2.3. In fact, these conditions capture precisely 
what is required for J \& to be a category. 

Proposition 2.2.6. Let *: B°P ->■ Cat be a B-indexed category. 

1. The first projection   I   is a cloven fibration. It is split whenever * is 
B 

split. 

2. Turning a cloven fibration into an indexed category (as in Proposi- 
tion 2.2.4) end then again into a fibration yields a fibration which is 
equivalent to the original one. 

3. Moreover, turning an indexed category first into a fibration and then 
into an indexed category yields a result which is "essentially the same" 
as the original (in a sense which can be made precise). 

Change-of-base for Fibrations 

E 
Lemma 2.2.7. Let \p  be a fibration and let K: A -* B be a functor. Form 

B 
the pullback in Cat 

A xB E > E 
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In this situation, the functor K*(p) is also a fibration. It is cloven or split 
in case p is cloven or split. 

Here we are using ordinary pull backs of categories: A XB E has pairs 
(I € A, X e E) with KI = pX as objects. 

Proof. Given an object (J, Y) 6AX|E and a morphism u: I ->■ J in A, let 
/: X ->• Y be the cartesian lifting of Ku: KI -» KJ in B. The pair (u, /) 
is then Ä'*(p)-cartesian over u. □ 

Categories of Fibrations 

E D 
Let \p  and \.i  be two fibrations over B.  A fibred functor from p to q is 

B B 
a functor H: E —> D such that the diagram 

^ H ^ 

commutes and, moreover, such that i/ preserves cartesian morphisms. 
Fibrations over B and fibred functors among such constitute a 2-category 

Fib(B) with 2-cells natural transformations r between fibred functors for 
which every component of r is vertical. 

A fibred functor among split fibrations over B is split if it is preserves 
the splitting on-the-nose. 

If H: E —>■ D is a fibred or split fibred functor as above, then for each 
object I £ B, one obtains by restriction a functor if/: E/ -» Dj between the 
fibres over /. For u: I —> J in B, writing u* for the reindexing functor Ej —>■ 
E/ and M

ö
 for the reindexing functor Dj —> Dj, one has that t^if j = i^/w*. 

Fibrewise Structure and Fibred Adjunctions 

Definition 2.2.8. Let o be some categorical property or structure (e.g., 
some limit, colimit, or exponent). 

1. We say a fibration has fibred o's or fibrewise o's if all fibre categories 
have o's and reindexing functors preserve o's. A split fibration has 
split fibred o's if all fibres have chosen o's and the reindexing functors 
induced by the splitting preserve o's on-the-nose. 



20 Preliminaries on Fibrations and Categorical Logic 

E B> 
2. A fibred functor H from l? to 4-9  preserves o's if for each I e B> the 

B B 
functor Hi preserves o's. For the split version, one requires preserva- 
tion on-the-nose. 

For example, for a category B with finite limits, the codomain fibration 
B~> 

I   always has fibred finite limits.   The subobject fibration on such B has 
B 

.split fibred finite limits. A category B is locally cartesian closed (i.e., all 
slices are cartesian closed) if and only if the codomain fibration on B is fibred 
cartesian closed (i.e., has fibred finite products and exponents). 

The following definition and the following three lemmas express that a 
fibred categorical notion is a property of all fibres, preserved by reindexing. 

Definition 2.2.9. 

1. An adjunction between fibrations over the same base B is an adjunction 
E D 

in the 2-category Fib(B). Explicitly, let \P and 4,9  be fibrations over 
B B 

B.  Then a fibred adjunction over B is given by fibred functors F, 
G as in 

:D 
G 

q 

together with vertical natural transformations 

7]: idE => GF        and        e: FG =>• idn 

satisfying the usual triangular identities Geor/G = id and eFoFi] = id. 

2. A split fibred adjunction over B between split fibrations p and q 
consists of a fibred adjunction as above for which the functors F and 
G are split. 

E 
Lemma 2.2.10. A fibration \p   has a fibred terminal object if and only if 

IB 

the unique morphism from p to the terminal object in Fib(B)  has a fibred 
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right adjoint, say 1, as in 

E D 
Lemma 2.2.11. Let \p  and ]/i   be fibrations over B and Zei Jf: E ->• D be 

B B 

a fibred functor from p to q. Then H has a fibred left (resp. right) adjoint 

iff both 

1. For each object 7 G B, the functor Hi: E/ -» Dj fta.s a left (resp. right) 

adjoint K(I). 

2. The Beck-Chevalley condition holds, i.e., for every map u: I —» J 
in B and for every pair of reindexing functors 

Ej-^^E/ Dj^^D/ 

the canonical natural transformation1 

K(I)J =>■ u*K(J) (resp. u*K(J) => K(I)J) 

is an isomorphism.. 

E D 
Lemma 2.2.12. Let \p and \$  be split fibrations over B and let H: E —>■ D 

B B 

be a split fibred functor. Then H has a split fibred left (resp. right) adjoint 
iff both items 1 and 2 in the previous lemma hold, but in item 2 with the 

canonical map being an identity. 

E B> 

Two fibrations \p and \a over the same base B are equivalent if there 
B B 

are fibred functors F: E ->• D and G: D -> E over B with vertical natural 
isomorphisms GF = id-®, and FG = idjj,. 

obtained as the transpose of u}X S-U^HJKJX = Hj(u*KjX) across the adjunc- 
tion K(I) H Hi. In the sequel we do not write out explicitly how such canonical natural 

transformations are obtained. 
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Fibred Products and Coproducts 

Definition 2.2.13. Let B be a category with cartesian products and let 
E 
IP   be a fibration.   We say that p has simple products (resp. simple 

coproducts) if both 

• for every pair of objects I, J e B, every "weakening functor" 

* 
E/     'I,J > EIxJ 

induced by the projection TT^J : I x J -4 I, has a right adjoint fLj j\ 
(resp. a left adjoint jX/n). 

• the Beck-Chevalley condition holds:   for every u: K -4 / in B and 
J € B in the diagram 

E/ —*- EA- 

E/xJ -. T^-EA'XJ 
(uxidj* 

the canonical natural transformation 

U*TI(I,J)^II(K,J)(UX id)* 

(resp. U(A-;J)(« x id)* =» u* U(/,j)) 

is an isomorphism. 

E 
Definition 2.2.14. Let B be a category with pullbacks and let \p   be a 

B 
fibration. We say that p has products (resp. coproducts) if both 

• for every morphism u: I -¥ J, every substitution functor u* has a 
right adjoint ]Ju (resp. left adjoint ]JJ 

• the Beck-Chevalley condition holds:   for every pullback in B of the 
form 

K-j^L 
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the canonical natural transformation 

s*Uu^Uvr* (resp.IL'•=►** II«) 

is an isomorphism. 

Clearly, if a fibration has products (resp. coproducts), then it also has 
simple products (resp. coproducts). 

A split fibration has split (simple) products (resp. split (simple) 
coproducts if it has (simple) products and the isomorphism mentioned in 
the Beck-Chevalley condition is an identity (for the adjoints to the reindexing 

functors induced by the splitting). 

Remark 2.2.15. The Beck-Chevalley condition in the definition of (simple) 
products comes from the fact that (simple) products are an instance of fibred 
adjunctions [Her93], which, by Lemma 2.2.11, are described equivalently via 
adjunctions among the fibres and a Beck-Chevalley condition. 

Lemma 2.2.16. Consider a fibration for which each reindexing functor has 
both a left TJ and a right adjoint \\. Then Beck-Chevalley holds for coprod- 

ucts TJ iff it holds for products U■ 

B^ 
For a categorv B with finite limits, the codomain fibration   \,  on B has 

B 

1. coproducts JJU given by composition: II«(v: X ~y J) = V ° u 

2. simple products IJ(j j\ iff ® is cartesian closed 

3. products Ylu iff ß is locally cartesian closed. 

Definition 2.2.17. A fibration is called complete if it has products JJ« 
and fibred finite limits. Dually, a fibration is cocomplete if it has coprod- 
ucts \JU and fibred finite colimits. 

The following lemma will be used in the categorical description of logics 
and type theories. In logic it corresponds to the equivalence of 3x: a. (ip A 
ip(x)) and ip A 3x: a. ip(x), if x does not occur free in <p. 

E 
Lemma 2.2.18. Let \p   be a fibred cartesian closed category. 
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1. Suppose p has simple coproducts. For each pair of objects I, J e B and 
each pair of objects Y <G E/, Z G EIxJ, the canonical morphism (the 
Frobenius map) 

U{i,j)(*iAY) xz) —>y x U{i,j)(z) 

is an isomorphism. 

2. Suppose now p has coproducts.  Then for each u: I ->• J in B, Y G Ej 
and Z E Ei, the canonical morphism (the Frobenius map) 

LI>*(y)xz)—»YxUuW 

is an isomorphism. 

Even if there are no fibred exponents around, the Frobenius map can still 
be an isomorphism. In that case we shall speak of (simple) coproducts 
with the Frobenius property, or of (simple) coproducts satisfying 
Frobenius. 

2.2.2     Categorical Logic 

In the sequel we shall make use of fibrations and indexed categories to de- 
scribe models of logics and type theories. Moreover, we shall often assume 
given a fibration with certain properties, and then use its internal logic to 
make new constructions and prove properties. 

An interpretation of a logical theory in a given fibration is formally 
defined by a kind of functorial semantics, namely as a morphism of fibra- 
tions from a certain classifying fibration of the logic to the given fibration. 
See [Jac99] for a precise detailed treatment. Here we just sketch the general 
idea and include a description of fibred equality. 

E 
The general idea for interpreting many-sorted logic in a fibration \p  is 

B 
as follows. Types and terms are interpreted as objects and morphisms in the 
base category. Contexts Y are interpreted as objects I of the base category 
(e.g., as the product of all the types of the variables in the context).   A 
formula Tr-cp: Prop in context T is interpreted as an object in E/, the fibre 
over the object / interpreting the context T.   Substitution of a term in a 
formula is interpreted by reindexing the interpretation of the formula along 
the map in the base interpreting the term. Thus, if we have a formula 

x: a \- (f. Prop 
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and a term 

ThM: a 

with 

• T interpreted by I 

• a interpreted by J 

• x: a h cp: Prop interpreted by X € Ej 

• T \- M: a interpreted by a morphism m: I —> J 

then the formula tp with M substituted for x, that is, 

T h <p[M/x]: Prop 

is interpreted by m*(X) in the fibre over /. 
When T,x: a h <y9: Prop is a formula, and F h M: a is a term, we 

sometimes simply write T h ^(M): Prop for T h <p[M/x]: Prop. 
Entailment r | y? h ^ is interpreted as the existence of an arrow from 

the interpretation of <p to the interpretation of ip in E/ (where / is again 
the interpretation of V). Since in logic one does not typically distinguish 
between different proofs of the same entailment, fibrations for interpreting 
logics will typically be preorder fibrations. More general fibrations will be 
used to model type theories (where one does distinguish between different 
terms). 

Fibred Equality 

We recall the categorical description of equality in terms of left adjoints to 
contraction functors 6*. The approach is due to Lawvere [Law68]; we 
follow the presentation in [Jac99]. 

In a category with products we write, for objects / and J, 

s=s(i.j)=(idy)    ,r    T. 
/ x J l ^ (/ X J) X J 

for the "parameterized" diagonal which duplicates J, with parameter I. 

E 
Definition 2.2.19. Let \.p  be a fibration on a base category B with finite 

B 
products. 
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1. Then p is said to have (simple) equality if both 

• for every pair I,J <E B, each contraction functor 5(1, J)* has a 
left adjoint 

E/xJ  L-^E(/xJ)xJ 

• the Beck-Chevalley condition holds: for each map u: K ->• I in 
B, the canonical natural transformation 

EC
LA',J(

W
 

X
 
idT => ((u x id) x w/)*Eq7J 

is an isomorphism. 

2. If p is a fibration with fibred finite products x, then we say that p has 
equality with the Frobenius property or equality satisfying 
Frobenius if it has equality as described above in such a way that for 
all objects A' e E(/xJ)xJ and Y £ E/xJ, the canonical map 

EqItJ(S*(X) x Y) > X x EqJi<7(Y) 

is an isomorphism. 
E 

Let \p be a fibration with equality. Assume that p has a terminal object 

functor 1: B -» E, which for each I £ B gives the terminal object in the fibre 
over /. For parallel maps u, v: I —y J in B we write 

Eq(u,v)^ {{id,u),vy(EqhJ(l)) ZE!, 

where 1 = 1(1 x J) is the terminal object in the fibre over IxJ. This yields 
an equality predicate in the fibre over the domain / of the maps u and v. We 
think intuitively of the predicate Eq(u, v) at i e I as the truth of u(i) =j v(i) 
in the "internal logic of the fibration p". Formally, we say that u,v: I -> J 
are internally equal if there is a morphism (a "proof") 1 -> Eq(u,v) in 
the fibre over I. This need not be the same as external equality of u, v 
which simply means that u = v as morphisms of B. External equality always 
implies internal equality. In case internal equality is the same as external 
equality, we say that the fibration has very strong equality. 

Let B be a category with finite limits and consider the subobject fibration 
Sub(B) 
i     on B. For maps u, v: I -> J in B, one can easily verify that Eq(u, v) 

is the equalizer of u and v. Subobject fibrations therefore always have very 
strong equality. See [Jac99, Section 3.5] for some examples of fibrations 
which do not have very strong equality. 
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Chapter 3 

A General Notion of 
Realizability for Type 
Theory 

We define a general notion of realizability to be a weakly closed partial carte- 
sian category (WCPC-category), which encompasses both partial combina- 
tory algebras and algebraic lattices (and many more), see Section 3.1. Using 
this notion of realizability we show how to construct categories of so-called 
assemblies and modest sets (partial equivalence relations) over them. We 
then also show that the so constructed categories provide models of depen- 
dent type theory. Throughout the chapter we focus mostly on assemblies; 
then in Section 3.7 we briefly show how to obtain corresponding results for 
modest sets. The main result of the chapter is Theorem 3.6.20, which says 
that the category of assemblies provides a split model of dependent type 
theory. We also characterize when a WCPC-category gives rise to a topos. 
We now provide an outline of the chapter. 

Rather than going straight from the general notion of realizability to the 
category of assemblies there-over, we proceed in stages, making use of ideas 
and notions from categorical logic. This approach has the advantage that 
it allows us to state and prove results at a more general level. Moreover, 
we emphasize the connection to tripos theory [HJP80, Pit81], which we 
shall make use of in later chapters. Furthermore, we shall see that in the 
construction of models for dependent type theory we can reason abstractly 
using the internal logic of a realizability pretripos; we do not need to go into 
detailed manipulation of realizers. 

Thus in Section 3.3, after recalling in Section 3.2 the notions of regular 
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categories and regular fibrations, we show how to define a category of as- 
semblies over any regular fibration and we show that the so-defined category 
of assemblies is regular. 

In Section 3.4 we define a notion of pretripos, which is a weak version 
of tripos [HJP80, Pit81]. We further show that any WCPC-category gives 
rise to a pretripos over Set. We also characterize precisely when a WCPC- 
category gives rise to a topos; this is the case iff the WCPC-category has a. 
so-called universal object of which all other objects are retracts. 

A pretripos is a regular fibration and in Section 3.5 we show that the 

category of assemblies over a pretripos is locally cartesian closed, thus giving 
rise to a non-split model of dependent type theory. 

In the following section, 3.6, we briefly review some of the problems of 
modelling dependent type theory and then show in Theorem 3.6.20 how 
to obtain a split model of dependent type theory from any readability 
pretripos. This is the main result of this chapter. 

Then in Section 3.7 we show how to define a category of modest sets over 
any readability pretripos and that it also provides a model of dependent 
type theory. Our account of these models of dependent type theory is a. 
general uniform account in the sense that the already mentioned model of 
dependent type theory in Equ [BBS98] and also models based on assem- 
blies over partial combinatory algebras (see, e.g., [LM91, Jac99]) are special 
instances. We further relate the category of modest sets to the category of 
assemblies. 

As already mentioned, our approach in this chapter is inspired by the 
tripos-theoretic approach to realizability over partial combinatory algebras 

[HJP80, Pit81]. In our joint paper with Aurelio Carboni, Pino Rosolini and 
Dana Scott [BCRS98], see also [CR99], we have developed a complemen- 
tary approach to the general notion of realizability for type theory. The 
complementary approach is based on the theory of exact categories and ex- 
act completions, generalizing the exact-completion approach to realizability 
over partial combinatory algebras. In the theory of realizability over partial 
combinatory algebras, it has been very useful to have complementary view- 
points, and we believe the same holds for our general notion of realizability 
for type theory. In Section 3.8 we relate our approach in this chapter to 
our approach in [BCRS98]. One advantage of the approach in this chapter 
is that it easily facilitates the description of split models of dependent type 
theory. 

Finally, in Section 3.9 I discuss some other closely related work of Abram- 
sky [Abr95], Lambek [Lam94], and Longley [Lon99]. 

Throughout the chapter we shall see that we leave many interesting 
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questions open. (In particular, we do not undertake a thorough study of a 
suitable 2-category of WCPC-categories, which would generalize Longley's 
2-categofy of partial combinatory algebras and applicative transformations.) 
In Section 3.10 we suggest a number of questions for future work. 

In this chapter we focus on the general notion of realizability and how 
it can be used to model dependent type theory; in the following chapter we 
show how the general notion of realizability can also be used to model logics 
over the dependent type theory. In Appendix A, I have worked out in very 
concrete terms a particularly interesting example, namely the dependent 
type theory and predicate logic for Equ. It is basically straightforward to 
do so using the theorems proved in this and the following chapter. I have 
nevertheless chosen to include this treatment for the following reasons. First, 
I hope it may make the abstract treatment in this and the following chapter 
more accessible to readers not thoroughly familiar with [Jac99]. Indeed it 
may be helpful to read the appendix in parallel with the treatment in this 
and the following chapter. Second, we note that when one wants to use 
the type theory and logic to construct objects or prove properties about the 
model, one often needs to know what the interpretation is in concrete terms 
and so it makes sense to actually work it out. 

3.1    A General Notion of Realizability 

In this section we define the notion of a weakly closed partial cartesian cate- 
gory (WCPC-category). We shall show how such a. category can be seen as 
a general universe of realizers. In particular, in Section 3.1.2 we show that 
any partial combinatory algebra gives rise to a weakly closed partial carte- 
sian category. We review the definition of a partial combinatory algebra in 
Section 3.1.1. 

Our notion of a WCPC-category is just a weak version of a cartesian 
closed category of partial maps. We thus begin by recalling the definition of 
a partial cartesian category from [RR88]. The wording "partial cartesian" is 
a shortening of "partial maps on a cartesian category." There is an excellent 
overview of categories of partial maps in [RR88] to which we refer the reader 
for much more information on categories of partial maps and their history 
than we can include here. See also [Ros86]. 

The following definitions (3.1.1-3.1.7) are from [RR88, Page 101]. 

Definition 3.1.1. A p-category is a category C endowed with a bifunctor 
X : Cx C —> C which is called product, a natural transformation A: (-) —> 
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(- x -) which is called the diagonal and two families of natural transforma- 
tions {p_tY: (- X Y) -»• (-) | Y e C} and { qx,-: (X x-)-> (-) | A'eC} 
which are called projections, satisfying the identities 

PX,xAX = idX = qx,X&X (PX,Y X qx,v)\xxY = idXxY 

Px,v(idx x PY,Z) = PA.FXZ Px,z(idx X gy-iZ) = pA'.rxZ 

QX,Y(PX,Y x 'irf^) = </A'XF,Z qx,z{qxy x »rfz) = gA-xr.z- 

Finally we require that the associativity and commutativity isomorphisms 
a and r defined as below by 

<*X,Y,Z.= {{%dx X pY,z) X <3Y,zqX,Yxz)&Xx(YxZ) 

: X x (Y x Z) -)• (X x Y) x Z 

and 

TX,Y = (qx,Y x PA',r)AA'XK : X xY ->Y xX 

are natural in all variables (the components need not be so). 
A p-functor F: C ->■ D between ^categories is a functor preserving prod- 

ucts, projections, and diagonals up to a natural isomorphism. 

Definition 3.1.2. Given a map /: X ->■ Y in the p-category C, the do- 
main dom /: X -» Y of / is the composite map px,Y(idx xf)Ax:X->X. 

Definition 3.1.3. A map /: X ->• Y in a p-category C is total if dom / = 
id. We denote the subcategory of total maps Q. 

Example 3.1.4. Let Ptl denote the category of sets and partial functions. 
It is a ^category with total category the usual category Set of sets and 
total functions. 

For all objects X and Y in a ^-category C, the maps idx, Px,Y, qx,Y, 
and AA are total. If morphisms f:X->Y and g: Y -> Z are both total, 
then their composite gf: X -> Z is total. The subcategory Q of total maps 
has binary cartesian products. A p-functor maps total maps to total maps. 

Definition 3.1.5. A p-category C is said to be a partial cartesian cate- 
gory if the subcategory Q of total maps has a terminal object (and so has 
finite products). 

A partial cartesian category C is also called a p-category with a one- 
element object. 
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Remark 3.1.6. Let C be a partial cartesian category. If on every hom-set 
C(.Y, Y), the extension order is defined as 

cp < ip <£=4>  (p — tp o dom <p, 

then this defines a structure of a bicategory of partial maps on C [RR88, 
Proposition 3.4]. See loc. cit. and [Car87] for more on bicategories of partial 
maps. 

Definition 3.1.7. Let C be a partial cartesian category. Then C is is said 
to be closed if, for every object X in C, there is an adjunction 

(A'x-) 

[A'--] 

that is, for all Y and Z in C, there is a natural isomorphism 

C(X xY,Z)^Q (Y, [X ->> Z]). 

The object [X —*■ Z] is referred to as the partial exponential of X and Z. 

In elementary terms, the above definition says that C is closed if, for all 
X and Z in C, there exists an object [X —*• Z] and a morphism e: [X —>• 
Z] X X —>■ Z in C such that, for all objects Y, all morphisms f:YxX-*Z 
in C, there exists a unique map f':Y—t [X —^ Z] in Q (note that /' is 
total!), such that the following diagram commutes in C: 

^Z 

Y xX 

Let C be a partial cartesian category. Then we say that C is weakly closed if 
C satisfies the definition of being closed except that the required morphism 
/' is only required to exist, not to be unique. Explicitly: 

Definition 3.1.8. Let C be a partial cartesian category. Then we say that 
C is weakly closed if, for all X and Z in C, there exists an object [X —>■ Z] 
and a morphism e: [X —^ Z] X X -» Z in C such that, for all objects Y, 
all morphisms /: Y X X -> Z in C, there exists a (not necessarily unique) 
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map /': Y -► [X -+ Z] in Q (note that /' is total!), such that the following 
diagram commutes in C: 

^Z 

Y x X 

We refer to ([X -± Z], e) as the weak partial exponential of A" and Z. 

For simplicity we refer to a weakly closed partial cartesian category as a 
WCPC-category. 

Example 3.1.9. The category Ptl of sets and partial functions is a WCPC- 
category. (In fact, it is not only weakly closed but closed.) 

Definition 3.1.10. A WCPC-functor is just a p-functor. 

Note that a p-functor preserves products and domains and thus maps 
total morphisms to total morphisms. 

We may think of a WCPC-category C as a general universe of realizers 
as follows. The category C is a p-category because realizers may be only 
partially defined. Intuitively, [X -+ Z] is a set of realizers of functions from 
X to Z. There may be more than one realizer for each function from X to 
Z, hence /' is only required to exist, not to be unique. 

Example 3.1.11. Observe that, trivially, any cartesian closed category is 
a WCPC-category. Recall that the category ALat of algebraic lattices and 
Scott continuous functions is cartesian closed [DP90, GHK+80]; hence ALat 
is a WCPC-category. 

Next, we will show that any partial combinatory algebra gives rise to a 
WCPC-ca'tegory, that is not necessarily closed. 

3.1.1    Partial Combinatory Algebras 

We recall the definition of a partial combinatory algebra and present a couple 
of examples; readers familiar with partial combinatory algebras can skip this 
section. More detailed treatments of partial combinatory algebras can, for 
example, be found in [Lon94] or in [Bee85]. 

A partial combinatory algebra (PCA) consists of a set A together 
with a partial application function • : A X A -*■ A and two distinct elements 
K, S G A satisfying, for all x, y, and z in A, 

Kx 4,     Sx I,     Sxy I,        and        Kxy ~ x,     Sxyz ~ xz(yz), 
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where P \. means that P is defined and where Kleene equality P ~ Q 

means that P is defined if and only if Q is defined, and in that case they 
are equal.1 As above, we often write xy for x ■ y. Letting I = SKK £ A one 
has that I • a = a, for all a £ A. A total combinatory algebra is just a 
PCA in which application is total (i.e., ab |, for all a, b £ A). 

We often simply write A for a PCA (A, •, K, S). In such a PCA A one 
has combinatory completeness: for every polynomial term M(xi,... ,xn) 
built from variables xi,... ,xn, constants c for c £ A, and application •, 

there is an element a £ A such that for all b\,.. .bn £ A, 

a&i •••&„_! 4 and        abx ■ ■ -bn ~ [M](&i,... , bn), 

where [M] is the partial function An —*• A obtained by interpreting the 
polynomial M. To prove this one uses Schönfinkeis abstraction rules to 

define functional abstraction: 

A.T..T = I = SKK 

A.T. M = KM if x is not free in M 

Xx. MN = S(\x. M)(Xx. N). 

Combinatory completeness is then obtained by taking a = Xxi ■ ■ -xn.M. 

Note also the pairing in PCAs, as in the untyped lambda calculus: 

(x,y) = Xz.zxy=S(SI(Kx))(Ky) 

with projections 

■KX = xK        and        w'x = x(Kl). 

Then (x,y) I and ir(x,y) = x, n'(x,y) — y (but not (irx,Tr'x) = x — in 
general no surjective pairing function can be encoded [Bar85, Page 134]). 
Finite sequences can also be encoded as in the untyped lambda calculus (see, 
e.g., [Bar85, Page 134]). We write 

[X\, X2, . . . , Xn\ 

for an encoding of the finite sequence of x\,x-2,. ■ ■ , xn £ A and we write 7T; 
for an encoding of the i'th projection function. 

'in other treatments of partial combinatory algebras one will often find that K and 
S are not part of the structure of a partial combinatory algebra, but are just required to 
exist; see, e.g., [Bee85]. 



36 A General Notion ofRealizability for Type Theory 

Let (A, •, K, S) be a PCA. We say that a subset B C A is a sub partial- 
combinatory-algebra of A (sub-PCA) if and only if B contains K and 
S and is closed under partial application. Note that if B is a sub-PCA of 
(^4,-,K,S) then any element defined using lambda calculus and constants 
from B is again an element of B. 

Convention 3.1.12. For sets A', Y C A we write X D Y for the set 

{ / € A | Va € X. f ■ a 1 and f-aeY}. 

We sometimes write f: X D Y for / G (A" D Y). 

Example 3.1.13. Consider the set N of natural numbers equipped with 
Kleene application: m ■ n ~ {m}(n) , where {m} denotes the partial 
recursive function coded by m. The existence of K and S with the required 
properties is an immediate consequence of the S-M-N theorem. We refer to 
this PCA as Kt, or Kleene's first model.2 

Example 3.1.14. Let A denote the set of terms of the untyped lambda 
calculus over a countably infinite set of variables. Let A/ß be its quotient 
modulo /^-equality (see, e.g., [Bar85]) with the induced application. This de- 
fines a total combinatory algebra: for K and S we may take the equivalence 
classes of the lambda terms Xx, y. x and Xx, y, z. xz(yz). 

Example 3.1.15. Let N denote the set of natural numbers and let P = PN 
be its powerset. Suppose that (-,-> :NxN-> Nisa coding function for 
pairs and that [-,•••,-]: Pfin N ->• N is a coding function for finite subsets 
of N. Recall that P can be viewed as a topological space with the Scott 
topology and that a function / : P ->■ P then is continuous if and only if 
/ preserves inclusion and /(IJ A) = U(/A) whenever A0 C Ax C • ■ • C P. 
For a continuous function / : P -* P, we define the graph of / to be the set 

Graph(/) = { {[xu ... , xnl y) \ y e f({xu ... , xn}) } € P. 

Since / is continuous, it is completely determined by its graph:  for any 
A E P, f{A) = {y\3xu...,xn e A. ([xu ...,xn], yj e Graph(/) }. The 
operation 

A-B = {y | 3a?!,... ,xne B. ([a?i,... ,xn],y) € A} 

is a continuous application operation • : P x P -)■ P, and (P, •) forms a total 
combinatory algebra, called the graph model. 

"The definition of Kt is dependent on a particular encoding of the partial recursive 
functions as natural numbers; however, for most purposes, the choice of encoding will be 
irrelevant. 
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Example 3.1.16. Let RE denote the recursively enumerable (r.e.) subsets 
of N. If in the previous example we take the coding functions (-, -) and 
[-,••• , -] to be recursive, then (RE, •) forms a sub-PCA of (F, •) as, clearly, 
K and S may be chosen to be r.e. subsets. We refer to RE as the recursively 
enumerable graph model. 

There are many more examples of partial combinatory algebras (see, for 

example, [Lon94]). 

3.1.2    Constructing a WCPC-category from a Partial Com- 
binatory Algebra 

We now show how any partial combinatory algebra in a direct way gives 
rise to a WCPC-category. Let (A, ■) be a PCA. By an A-definable (total) 
function we mean a function / from A to A for which there exists an 
element a £ A such that, for all b £ A, a • b 1 and a -b = f(b). The set 
of ^4-definable functions form a monoid under composition; we refer to this 
monoid as the monoid of ^4-definable functions. By an ,4-dennable 
partial function we mean a partial function / from A to A for which there 
exists an element a £ A such that, for all b e A, we have that a ■ b ~ f(b). 

Definition 3.1.17. Let (A, •) be a PCA. 

1. We define the category C(A)t to be the idempotent splitting of the 
monoid of A-definable total functions. That is, objects are total A- 
definable idempotents and a morphism /: X —Y Y is an yl-definable 
total function such that YfX = f. The identity on X is X itself and 
composition is composition of total functions. 

2. We define the category C(A) induced by A to be the category with 
objects total A-definable idempotents (i.e., same objects as C(A)t) and 
with morphisms /: X —> Y ,4-dennable partial functions / satisfying 
that YfX = f (as partial functions). The identity on X is X and 
composition is composition of partial functions. 

Of course, this definition is related to and inspired by the work of 
Dana Scott [Sco80] and the treatment of C-monoids in [LS86]. We do not 
pause here to study what universal property C(A) may have, but content 
ourselves with showing that C(A) indeed is a WCPC-category: 

Proposition 3.1.18. Let A be a PCA. Then the category C(A) induced by 
A is a WCPC-category and its subcategory of total maps is equivalent to 

C(A)t. 
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Proof. The bifunctor X : C(^) -» C{A) is defined on objects X and Y by 

XxY = Xz. (X{nz),Y(7r'z)) 

and on morphisms /: X ->• X' and g: Y ->■ F' by 

fxg = Xz. (f(7rz),g(n'z)). 

The diagonal natural transformation A is given by 

A A- : X -> A" x A = A.r. (Xx, Xx) 

and the projections are given by 

Px,Y ■ X x Y ->■ A = 7T o (A' x 1') 

gA,v: A x y ^ y = TT' o (A x Y) 

It can then be verified that the induced isomorphisms otxy,z and rXy indeed 
are natural in all variables, so that C(,4) indeed is a ^-category. 

By definition f: X -> Y is total in the sense of a p-category if px,y{idx X 
/)AA-: X ->• A equals the identity on A. Note that, f:X ->Y entails that 
fX = f (as partial functions). Further note that, for all a £ A, 

Px,Y(idx X f)Ax(a)=px,Y{idx x /)(A(a), A (a)) 

=  ipX,Y{X(a), /(A(a)))    if /(A(a)) is defined 

[undefined otherwise 

= | A (a) if /(a) is defined 

[ undefined    otherwise. 

Since the identity on A is A' itself, we clearly have that / is total in the 
sense of a ^-category just in case / is a morphism of C(A)t. 

To show that C(A) is a partial cartesian category, it just remains to 
show that C(A)t has a terminal object. The terminal object 1 in C(A)t is 
the idempotent A.T.K. 

It now only remains to show that C(^4) is weakly closed. For objects X 
and y in C(A) we define [X -± Z] to be the (total) idempotent 

Xf.Xx.Z(f(X(x))). 

(Note that [X -± Z] of course is .4-definable, by the element 

Xa. Xb. az{a(ax{b))) G ,4, 
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where ax and az witness the definability of X and Z.) The morphism 
e: [X ->■ Z] x X -> Z is defined to be the (partial) function AM. (iru)(ir'u). 
Let f:Yx X -¥ Z be any morphism in C(.4) and define /': Y -> [X -*■ Z] 
to be Ay. [X ->■ Z](Xx. f(Yy, x)). Note that /' is total. One can then verify 
that the diagram 

f'xidx 

Y xX 

commutes in C(A), as required. □ 

Convention 3.1.19. We will often refer to the category C(A) induced by a 
PCA A as the WCPC-category induced by A, thus implicitly referring 
to the above proposition. 

For a PCAA, we define a morphism U: C(A) -» Ptl of WCPC-categories 
as follows. On an object X G C(^4), we set 

U{X) = {X{a)\ae A}, 

and for a morphism /: X ->■ Y in C(^4), we set 

U(f) = f. 

Note that U indeed is a WCPC-functor; in particular U maps C(A)t into 
Set and U applied to the terminal object in C(A)t is a terminal object in 
Set. 

3.2    Regular Categories and Regular Fibrations 

In Section 3.2.1 we recall the definition of a regular category and some basic 
properties of regular categories; the material is entirely standard and may 
be skipped if you are familiar with regular categories. In Section 3.2.2 we 
recall the definition of a regular fibration from [Jac99]. Readers familiar 
with [Jac99] may skip this section. 

3.2.1    Regular Categories 

We recall the definition of a regular category and some basic properties. 
See, for example, [BGv071, FS90, Bor94b] for more background on regular 
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categories. First recall that a regular epimorphism is an epimorphism 
which occurs as a coequalizer, i.e., e:Y->Z\s a regular epimorphism if 
there exists a pair of morphisms /, g: X —> Y such that 

/ 
;   :Y- ̂ +z 

is a coequalizer diagram. Also recall that a category is said to be left exact, 
or lex for short, if it has all finite limits: equalizers, pullbacks, etc.. Also 
recall that a kernel pair (/0, /i) of an arrow /: A' -» Y is the pullback of / 
with itself, as in the following diagram: 

T-        ^         V A -—> X 
J 

h / 
• • ' 
} f —r*-> 

r 

Finally, recall that, in a category with pullbacks, a regular epimorphism is 
the coequalizer of its kernel pair. 

Definition 3.2.1. A category C is regular when 

1. C has finite limits; 

2. every kernel pair has a coequalizer; 

3. regular epimorphisms are stable under pullbacks (i.e., the pullback of 
a regular epimorphism along any morphisms is again a regular epimor- 
phism). 

It follows that a regular category is the same as a left exact category 
with a (regular epi, mono) stable factorization system [FK72]. Indeed, the 
image of a morphism / is obtained as the coequalizer of the kernel pair of 
/• 

A functor F: C -> D is exact (also called regular) if it preserves fi- 
nite limits and coeqalizers of kernel pairs (or, equivalently, preserves finite 
limits and regular epis). Note that we use the term "exact" in the sense of 
Barr [BGv071]; in particular, it should not be confused with exact in the 
sense of preserving finite limits and finite colimits. 
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3.2.2    Regular Fibrations 

E 
Recall from [Jac99, Definition 4.2.1, Page 233] that a regular flbration \p 

B 

is a fibration which 

1. is a fibred preorder; 

2. has finite products in its base category B; 

3. has fibred finite products (for T and A); 

4. has fibred equality (Eq^j H 5(1, J)*) satisfying Frobenius (for =); 

5. has simple coproducts (U(/,j) H rf,j) satisfying Frobenius (for 3). 

Sub(B) 
Remark 3.2.2. A category B is regular if and only if     J,     is a regular 

E 

fibration [Jac99, Theorem 4.4.4]. In particular, if B is a topos, then the 
subobject fibration on B is a regular fibration which is equivalent, as a 
regular fibration, to the fibration obtained from the split indexed category 
B(— ,0B); where QM is the subobject classifier of B. 

A regular fibration models regular logic, the fragment of first-order (intu- 
itionistic) logic using only =, A, T, and 3. 

3.3    Assemblies over Regular Fibrations 

For any regular fibration, we may define a category of assemblies over it 
as follows. For particular regular fibrations, this construction specializes to 
assemblies over algebraic lattices as in [BBS98] and assemblies over partial 
combinatory algebras [CFS88, FS87, Car95, Lon94], see Examples 3.6.10 
and 3.6.11 in Section 3.6.2. The definition below is phrased using the internal 
language of a regular fibration; in the remark following the definition we 
recall what those logical definitions mean in categorical terms. 

E 
Definition 3.3.1. Let \J> be a regular fibration. Define Asm(p) to be the 

B 

category with 

objects pairs (X,Ex) with X G B, Ex € %, satisfying that, for 
all global elements ex '■ 1 —> X in B, 

Q\Q\-Ex(cx) 
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is valid in the logic of p. 

morphisms    from (X, Ex) to (Y, Ey) are morphisms / : A' ->• Y in B 
for which 

x:X\Ex(x)hEY(f(x)) 

is valid in the logic of p. 

Identities and composition are as in B. That is, the identity morphism on 
(X, Ex) is the identity on X and the composition of two morphisms is the 
composition of the morphisms in B. 

Remark 3.3.2. The condition on objects in the above definition can be 
expressed categorically as follows. For all global elements cx: 1 ->■ X in 
B, Tx <x c*x(Ex) in the fibre Ei over 1. The condition on morphisms 
/: {X, Ex) —> (Y, Ey) can be expressed categorically as follows: we require 
that Ex < f*{EY) in the fibre Ex over X. 

E 
Proposition 3.3.3. Let \p  be a regular fibration. IfE is regular, 1 is req- 

B 

ular protective in B, and p has coproducts satisfying the Frobenius property, 
then Asm(p) is a regular category. 

Proof. The terminal object is (1B, Tlm). 
The product of (A, Ex) and (F, EY) is (A' x 1', E) where 

(a, y): A x Y h E(x, y) 't* Ex (x) A Ey (y) 

with projections w and n' the projections of A x Y.   (Categorically, E is 
7r*(Ex)A7r'*(EY).) 

The equalizer of /, g: (A', Ex) -»■ (Y, Ey) is (Z, Ez), where 

/ 
Z-^+X Y 

 >■ 

9 

is an equalizer diagram in B, and Ez is defined as follows: 

z:Z\-Ez(z)^Ex(m(z)). 

Categorically, Ez = m*Ex- 
il remains to show that Asm(p) has stable images. So suppose 

f:(X,Ex)^(Y,Ey) 
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in Asm(p). Then /: A' —>• Y in B and we can consider the image factoriza- 
tion of / in B (since B is regular): 

A *■ Y 

Im(.f) 

Let W = Im(/) and let 

w: W h Ew{w) =f 3a;: A. e{x) = wAEx(x) 

Categorically, Ew = Lie Ex ■ We then claim that 

1.  (W, Ew) is an object of Asm(p); 

2. 

(A, EX)  (Y, Ey) 

(W, Ew) 

forms an image factorization in Asm(p); 

3. images as in item 2 are stable under pullback. 

Ad 1:      Let cw '■ 1 —>■ W be any global element.  By definition of Ew 
we are to show that 

0 | 0 h 3x: X. e(x) = cw A Ex(x) 

is valid in the logic of p. Since e: X -» W is an epi and 1 is regular 
projective in B, there is a morphism x: 1 —)■ A in B such that ex = cw. By 
the assumption that (X,Ex) € Asm(p), we have the required. (We here 
use that external existence implies internal existence [Jac99, Page 255] and 
that external equality implies internal equality.) 

Ad 2:      We first verify that e and m are indeed morphisms of Asm(p). 
For e we are to show that 

x: X \Ex(x)h Ew(e(x)) (3.1) 
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is valid in the logic of p. By definition of Ew, we have that (3.1) is equivalent 
to 

x: A | Ex(x) h 3a:: A'. e(x) = e(x) A Ex{x), 

which is clearly valid. For m we are to show that 

y:W\Ew(y)hEv(m(y)) 

is valid in the logic of p, that is, that 

y: W | 3.T : A. e{x) = y A Ex (x) h %(m(y)) (3.2) 

is valid in the logic of p. But (3.2) is clearly valid because, reasoning in- 
ternally, under the given assumption, m(y) = m(e(x)) = f(x) (the latter 
because externally we have / = me); f is an arrow in Asm(p); and Ex{x) 
holds by assumption. 

We now verify that m o e is indeed an image factorization of /.   So 
suppose that / also factors as h o </, as in the diagram 

(A, E, (Y, EY 

(Z, EZ) 

Then h o g is also a factorization of / in B;  hence there exists a unique 
u: W ->■ Z in B such that 

uo e = g and ho u = m 

in B. Thus it suffices to show that u is an arrow in Asm(p), i.e., to show 
that 

y:W\Ew(y)hEz(u{y)) 

is valid in the logic of p. We show this by arguing in the logic of p: Suppose 
that Ew{y), i.e., that 3x: X. e(x) = y A Ex(x). Then u{y) = g(x) and 
thus, as Ex(x) and g is an arrow in Asm(p), also Ez(g(x)) = Ez(u(y)), as 
required. 
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Ad 3:      Suppose that 

(P,Ep)-^(X,Ex] 

f 

(Z,EZ)-T*(Y,EY 

is a pullback in Asm(p). We are to show that the bottom square in 

(P,EP)-^(X,EX) 

e' e 
? ¥ 

{U, Eu) - -^ (W, EW) 
Y Y 

m' m 

(Z,EZ)-T*(Y,EY) 

is a pullback (where (U, Eu) is the image of /' and (W, Ew) is the image of 
/). By stability of image factorizations in B we have that both squares in 
the diagram 

P-y->X 

u-r^w 
Y—I 

Z-T-
Y 

are pullbacks in B. Thus it suffices to show that 

Eu ^ Ue' Ep 

is isomorphic to 

(m')*EzAh*Ew. 
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But this is easy: 

Eu = Ue, Ep 

= Ue>afrEzA(tirEX) 
= Ue>((e'r(mrEz A(h')*Ex) 
= {m')*Ez A \lAh'YEx) by Frobenius 

= (m')*Ez A h* ]Je Ex by Beck-Chevalley 

= (m')*EzAh*Ew. 

(Note the use of the Frobenius and Beck-Chevalley conditions; they explains 
the assumption in the proposition regarding coproducts along all maps in 
B.) . D 

For assemblies constructed over a regular fibration we may define functors 
to and from the base category as follows, generalizing the case of assemblies 
over a partial combinatory algebra (see, e.g., [Lon94]). 

E 
Definition 3.3.4. Let p be a regular fibration. Define the functor V: B ->• 

B 
Asm(p) as follows: 

V(X) = (X, Tx)        and        V(/: X -> Y) = f. 

Further, let T: Asm(p) ^ B be the functor defined as follows: 

T(X, Ex) = X       and        T(/) = /. 

Note that V is clearly full and faithful and that T is faithful. 
E 

Proposition 3.3.5. Let   \p   be a regular fibration. The functor 
Set 

r: Asm(p) -)■ B 

is left adjoint to V: 

r 
Asm(j))    ±    B. 

c v 

Proof. Clearly, 

T(X,EX) = X >Y 

(X,EX)—^(y,Ty)=v(y 
because, for any /: X -> Y in B, we trivially have that x: X \ Ex (x) h 
Ty(/(.r)) is valid in p. □ 
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E 
Proposition 3.3.6. Let J^   be a regular fibration satisfying the condition 

B 

os Proposition 3.3.3 so that Asm(p) is regular. Then both V and Y are 
regular functors. 

Proof. The functor V preserves limits as a right adjoint (Proposition 3.3.5). 
It clearly preserves image factorizations. The functor V preserves regular 
epis as a left adjoint. It clearly preserves finite limits. D 

E 
Remark 3.3.7. For a regular fibration   \p over Set, the functor 

Set 

T: Asm(p) -»■ Set 

is naturally isomorphic to the global sections functor HomAsra(p)(l, -)• 

We leave the question of what universal property the construction of the 
category of assemblies over a regular fibration satisfies. Some useful ideas for 
answering this question can be found in Longley's thesis [Lon94], in which 
Longley gave a universal property for the construction of the category of 
assemblies over a partial combinatory algebra. 

3.4    Pretriposes 

E 
Consider a regular fibration   \p over Set with coproducts satisfying Frobe- 

Set 

nius. We now know that the category of assemblies Asm(p) is regular. In 
E 

this section we show that by imposing further conditions on   \p   besides 
Set 

regularity, the resulting category Asm(p) is locally cartesian closed.3 In 
Section 3.4.1 we show that any WCPC-category gives rise to a fibration 
over Set meeting these conditions. We restrict attention to fibrations with 
base category Set since those suffice for our applications — the interested 
reader should not have any difficulty with generalizing the development to 
more general base categories. 

E 
Definition 3.4.1. A fibration   \p is called a pretripos if 

Set 

3 Recall that a category C is locally cartesian closed if every slice <C/X is cartesian 
closed. A locally cartesian closed category has finite limits. 
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1. it is a fibred preorder; 

2. it is fibred cartesian closed (for T, A, D); 

3. it has coproducts 3U H u* along all maps u: I -)■ J in the base Set; 

4. it has products u* -\ V„ along all maps u: I -» J in the base Set. 

E 
If, in addition,   _J-P  has fibred finite coproducts (for _L, V), we say that the 

Set 
fibration is a pretripos with disjunction. 

Recall from Chapter 2 that it is part of the definition of having coprod- 
ucts and products that the Beck-Chevalley condition holds. A pretripos 
(with disjunction) is said to be split if it is a split fibration, reindexing pre- 
serves the (bi)cartesian closed structure on the nose, and the Beck-Chevalley 
conditions hold with equality and not only isomorphisms. 

Remarks 3.4.2. 

(i) The name "pretripos" has been chosen to reflect the fact that such 
a fibration is weak version of a tripos [HJP80, Pit81] (see also Chap- 
ter 5): the essential difference is that a pretripos with disjunction is 
not required to have a generic object. 

E 
(ii) A pretripos   \p is a regular fibration: since we have coproducts along 

Set 
all maps and pis fibred cartesian closed, Frobenius automatically holds 
for 3 and we have equality satisfying Frobenius [Jac99, Lemma 1.9.12]. 

E 
Hence if \p is a pretripos, Asm(p) is a (well-defined) regular category 

Set 
by Proposition 3.3.3. 

(iii) A pretripos with disjunction models predicate logic and is a first-order 
hyperdoctrine in the sense of Pitts [Pit99] and a first-order fibration in 
the sense of Jacobs [Jac99].4 ("First-order" is perhaps a bit misleading 

The only difference between a first-order fibration over Set in the sense of Ja- 
cobs [Jac99] and a pretripos with disjunction is that we require products and coproducts 
along all morphisms, not only projections. As mentioned in [Jac99, 4.3.7, Page 253], for 
a first-order fibration one may in fact define left and right adjoints to u* for all maps 
u: I -» J, but they will not necessarily satisfy the Beck-Chevalley condition. We require 
explicitly that these adjoints do satisfy the Beck-Chevalley condition. This extra require- 
ment is needed for Proposition 3.3.3, it is met in all our applications and, moreover, it 
makes the connection with the standard definition of tripos [HJP80] very simple: a tripos 
is a pretripos with disjunction with a weak generic object, see Chapter 5. 
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since it only refers to the fact that we cannot quantify over all relations; 
it is possible to quantify over all types, including higher types, so 
the logic, which a pretripos models, is more like what is sometimes 
called A-logic [AB97]) Thus there are many examples of pretriposes; 
in particular, any tripos over Set is a pretripos with disjunction. 

3.4.1    Realizability Pretriposes 

Let C be a WCPC-category and U: C -► Ptl a WCPC-functor.  We now 
UFam(C) 

show how to define a pretripos       J,       over Set from C and U. We refer to 
Set 

it as the realizability pretripos over C, thus omitting explicit mentioning 
of U (which we think of as a forgetful functor). The idea is as for realizability 
triposes over partial combinatory algebras [HJP80], the difference being that 
here the realizers will be drawn from C instead of from a PCA. By a realizer 
we shall mean a morphism / in C 

We define a functor $: Setop -» Cat as follows. For a set 7, *(/) is 
the preorder with objects pairs of the form (A, p), where A is an object of 
C and ip: I —> P(UA) in Set. The less-than-or-equal relation is denoted h 
and the objects are preordered by decreeing that 

if and only if 

3g e C(A,B). Vi e /• Va e <p(i). U(g)(a) I and U(g){a) e ^(i). 

We refer to the objects of \P(7) as predicates on I or just as predicates. 
When the object A is clear from context we sometimes just write p> for 
(A, <p).   Further, we sometimes write (A,<p)(i) for p{i).   We refer to the 
object A in (A, <p) as the underlying object of realizers for <p. 

For a morphism u: I —>■ J, \P(M) is essentially composition: 

#(u)(A,v>: J ^P{UA)) = (A,ipou: I -¥P{UA)). 

Note that ^(u) is indeed monotone, hence a well-defined functor. Moreover, 
$ is clearly a functor, i.e., \P is a split indexed category. The resulting split 

UFam(C) 
fibration (obtained by the Grothendieck construction) is written       J, 

Set 
The fibred cartesian closed structure is given as follows. In the fibre over 

/, 

T = (l,i->C71), 
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where 1 is the terminal object in the category of total maps Q. The object 
T is indeed the terminal object in the fibre over 7, because for any other 
object (A,<p: I ->• P{UA)), there exists a map g: A -» 1 in Q which U 
maps to a total function U(g) so that g realizes (A, <p) h T. 

For predicates (A, ip) and (B, t/') over I, define {A, tp) A (B, V') to be 

{Ax B,i\-> { (a, b) \ a £ <p(i) and b £ rp{i) }). 

(Note that this definition makes sense because U preserves products.) It is 
straightforward to see that A so defined gives binary products in the fibre 
over I. 

For exponentials (implication), we define (.4, (p) D (B, i>) to be 

i^{g£ U[A - B] | Va £ p{i). U(e){g,a) | and U(e)(g,a) £ i/>{i) }), 

where ([A ->■ B],e) is the weak partial exponential of A and B. (Note that 
this definition makes sense because U preserves products.) Let us verify the 
adjunction: 

(A,yi)A(/J,y2)h(C,y3) 

{A,p1)h{{B,p2)D{C,p3)) = ([B - C], VO. 

Suppose (A, pi) A (B, (p2) h (C, (p3) via realizer h: Ax B -+C. Then there 
exists an h': A -> [B ->■ C] in Q such that the diagram 

[B-+C]xB 

h' X idB ^^L 

AxB j—>■ C, 

commutes, where ([B ->■ C],e) is the weak exponential of B and C. We 
claim that h! is a realizer for {A,pi) h (B, <^2) D (C,<p3). Indeed, let 
i £ I be arbitrary and let a £ px{i) be arbitrary. Note that U(ti){a) 
is defined because U(h') is total since b! is so. It remains to show that 
U(h')(a) £ {(B,(p2) D (C\<p3))(i). To this end, let b £ <p2{i) be arbitrary. 
Then we have that 

U{e){U{ti){a),b) = U(e)(U(h')(a), U(id)b) 

= U(e) o U(ti x id){a,b) 

= U(eoh' x id)(a,b) 

= U(h)(a,b) 

£ <p3(i)        by assumption. 
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For the other direction, suppose h': A ->■ [B —>■ C] is a realizer for (A, c^i) h 
{B,ip2) 3 (C', ^3). We then claim that e o (/?/,«/#): A X B -> C is a 
realizer for (A, y?i) A (B,<p2) H (C, ^3). Indeed, let i G J and (a, 6) G 
((A, <px)A(B, <ß2))(i) t>e arbitrary. By assumption U(h')(a) I and U(h')(a) G 

((ß',¥>2) 3 (C.V3))(0. so for a11 b G V2(*')» we have that U(e){U(h')a,b) I 
and U(e){U{h')a, b) = U(e o (h\ idB))(a, b) G if3{i)- The required follows. 

It is easy to verify that, for any u: I -> J in the base category Set, the 
reindexing functor u* preserves the fibred cartesian closed structure on the 

UFam(C) 
nose. In summa, we now have that       \.       is split fibred cartesian closed. 

Set 
Let ti:/->J6 Set and suppose (A, if) is a predicate in the fibre over 

/. For the coproduct along u we define 

3u(A,if) = (A,j ^ \J{f(i) I u(i) = j}). 

(Note that in the typical case, where u = n': I X J —> J, then 3u(A,<p) 
simplifies to {A,j >-> \JieI<p{i,j)).) 

It is easy to verify that 3U H u*.   For the Beck-Chevalley condition, 
suppose that 

is a pullback in Set. Now 3hk* = u*3v because, using that P is a pullback, 
we have 

u*3v(A,if) = (A,i^  (J {ip(k') I v(k') = u(i) }) 
k'ei< 

= (A,i^  \J{ ip(k') \3peP. h(p) = i and k(p) = k'}) 
k'eK 

= (A,i^ \J{ip(k(p))\h(p) = i}) 
PEP 

= 3hk*(A,<f). 

Thus we have split coproducts. 
For the product along u we define VM(A, if) to be 

[l-^A},j^f]{(u(i)=jj)Dif(i))), 
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where 

• [1 -"■ A] is the weak partial exponential of the terminal object 1 in Q 
and A 

• (<i)=jj) =[J{U1 \u(i)=j} 

• ((«(«') =J j) D <p(i)) equals 

{g € [/[I - A] I V6 e (u(i) =j j). U(e)(g,b) j and U(e)(g,b) e *>(*') } 

(Note that in the typical case, where 7^0 and « = 7r': 7 x J -» J, then 
Vu(A,y?) simplifies to (A, j .->■ f)ieIf{i,j)).) 

For the adjointness we are to show 

(B, r/>) h V„(A, y>) in UFam(C) 3 

u*{B,$i) = (B, V'OM) h (A)¥>)        in UFam(C)7 

To this end, suppose first that ft.: B -» [1 ->■ A] is a realizer for (73,^) l~ 
V„(A, <p). That means that 

Vj e J. V6 e V-'(i)- #(&)(&) 4 and U(h)(b) £ Vu(A,y>), 

where U(h)(b) € V„(A,y>) means that 

V?: e 7. Vt G (u(i) =j j). U{e)(U(h){b),t) I and U (e) (U (h) (b), t) e y>(i). 

It is helpful to consider the underlying diagram of realizers in C: 

[1 ^ A] x 1 -!* A 

hxid 

B x 1 

Let us write (id,!):£->■ J3 x 1 for the composite (irfx!) o Aß in C, where 
!: B ->• 1 is the unique (total) morphism in Q from ß to 1. We then claim 
that 

e o (ft x id) o (id, /): B ->• A 

realizes u*{B,i>) = (B,tbou) h (A,<p). To show the claim, let i e 7 and 
6 £ i>(u{i)) be arbitrary. Using the fact that [/(!) is total and that U 
preserves x, we see that 

U(e o (ft x id) o (id, !))(&) = U(e o (ft x *rf))(6, £/(!)&) 

= t/(e)([/(ft)(&), [/(!)&), 
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which is defined and in <p(i) by the assumptions. Hence we have shown the 
claim. For the other direction, suppose h: B -» A in C realizes (B,4>ou) h 
(A, ip) over I. That means that 

Vi G /. V& G 4>{u(i)). U{h)(b) I and U(h)(b) G <p(i). 

Consider the following diagram in C 

h' x id 

Bx 1 

Here ([1 —>■ A],e) is the weak partial exponential of 1 and A, and thus 
there exists a (total) morphism h': B -> [1 -^ A] in Q such that the shown 
diagram commutes. We claim that h! realizes (B,ip) h Vu(A,<p) over J. To 
show the claim, let j G J and ö G V'(i) ^e arbitrary. Note that U(h')(b) is 
defined since h' is total. Let ?' G / be arbitrary and suppose t G M(0 =J j 
(if there is no such t then we are trivially done). Using that U preserves X 
and projections, we have that 

U{e)(U(ti){b,t) = U(eo(tixid))(b,t) 

= U(hoPBjl)(b,t) 

= U(h)(b), 

which is defined and in f(i) by the assumption that b G ij>{j), t G (u(i) =j j) 
(so that j = u(i)), and h is a realizer. This completes the proof of the 
adjointness. The Beck-Chevalley condition holds because it holds for 3, see 
Lemma 2.2.16. 

Summarizing we have proved the following theorem. 

UFam(C) 
Theorem 3.4.3. Let C be a WCPC-category. Then       J,       is a split pre- 

set 
tripos. 

For a WCPC-category C and a morphism U: C -> Ptl of WCPC- 
UFam(C) 

categories, we refer to the induced pretripos       4-       as the realizability 
Set 

pretripos over C. 
For a realizability pretripos we have an interpretation of equality by 

Remark 3.4.2(H). Working out the general approach to interpreting equality 
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(see Chapter 2 or [Jac99]) we get the following.  For two functions (terms) 
u,v: I -> J in Set, the interpretation of the predicate 

i:I\Q\-u(i)=jv{i) (3.3) 

is 

y [0       otherwise      J 

Hence the predicate in (3.3) is internally valid iff, for all i € /, u(i) - v(i) 
as elements of J.  In other words, u and v are internally equal iff they are 

' UFam(C) 
externally equal (i.e., equal as functions in Set), so the equality in       I 

Set 
is very strong. 

We now present our two main example of realizability pretriposes. 

Example 3.4.4. For the category ALat of algebraic lattices, we define 
U: ALat -> Ptl to be the composition of the forgetful functor from ALat 
to Set and the inclusion functor from Set into Ptl. When we refer to the 

UFam(ALat) 
realizability pretripos I over ALat it is always understood that 

Set 
we refer to this functor U: ALat -» Ptl just defined. 

Example 3.4.5. By Proposition 3.1.18 we know that a PCA A generates 
UFam(C(yl)) 

a WCPC-category. When we refer to the realizability pretripos J, 
Set 

over the WCPC-category induced by A, the functor U: C(A) -> Ptl is al- 
ways assumed to be the functor U from Page 39. In this case, the realizabilitv 

UFam(C(A)) 
pretripos >        is equivalent as a preorder fibration over Set to the 

Set 
UFam(Pyl) 

standard realizability tripos        4,        over the partial combinatory algebra 
Set 

A (as defined in [HJP80], see also Chapter 5). In other words, there are 
fibred functors F: VFam(C(A)) -> VFam(PA) and G: VFam(PA) -> 
UFam(C(A)) over Set such that FG ^ id and GF ^ id, both vertically. 
Over 1, the functor F is defined by 

F(x,<peP(ux)) f 

(recall that UX = { X(a) \ a G A } C A, so <p can indeed be viewed as a 
subset of A and the definition thus makes sense). Over 1, the functor G is 
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defined by 

G(i>) = (idA,4>), 

where idA = Xx.x. The isomorphism G(F(X,<p)) = (X,<p) is realized by 
A', which is both a morphism X —> id A and a morphism id A —» A" in C(A). 
The isomorphisms F(G(^)) = ip is realized by W.4 (in both directions). 
We give a more general treatment of this example below when we consider 

readability pretriposes and universal objects. 

Realizability Pretriposes with Disjunction 

Definition 3.4.6. Let C be a p-category. Then we say that C has a weak 
initial object if it has a weak initial object in the traditional sense, that is, 
if there exists an object 0 in C such that for all objects X G C, there exists 

a morphism /: 0 —> X in C 

Definition 3.4.7. Let C be a p-category. Then we say that C has weak 
binary coproducts if, for any pair of objects X and Y in C, there exists an 

object X + Y in C and a diagram X    K > A + Y^—Y in Q such that, for 

all diagrams X ^Z^ Y in C, there exists a morphism u: X + Y ->■ Z 

in C such that 

commutes in C.  We refer to the morphisms K and K' as injections.  Note 
that they are required to be total. 

We say that a ^-category has weak finite coproducts if it has a weak 

initial object and weak binary coproducts. 
In case a WCPC-category C has weak finite coproducts, then the weak 

realizability tripos over C has disjunction: 

Theorem 3.4.8. Let C be a WCPC-category with weak finite coproducts. 
UFam(Q 

Then       X       JS a SP^ pretripos with disjunction. 
Set 
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Proof. By Theorem 3.4.3 we just have to show that       J,       has fibred finite 
Set 

coproducts. 
In the fibre over I, the initial object is 

-L = (O,0), 

where 0 is the weak initial object. 

For predicates [A,^) and (B,<p2) over I, let A—^A + B^— B be 
the weak coproduct of A and B. Then (A,^) V {B,<p2) is defined to be 

(A + B, i ^ { U(K)(a) I a € <fii(*) } U { U{K')(6) | b £ <p2(i) }). 

It is easy to verify that these definitions give split fibred finite coproducts 
(the totality of K and K' is used to show {A,ipi) h (A,ipi) V (B,<p2) and 
{B, <p2) \- (A, ifi) V(B, 932)); note in particular that they are preserved under 
reindexing since reindexing is just composition. □ 

Both of our main examples, the WCPC-category C(^l) induced by a PCA 
A and the category of algebraic lattices ALat have weak finite coproducts, 
as expressed by the following two propositions. 

Proposition 3.4.9. Let (A, •) be a partial combinatory algebra and let £{A) 
be the WCPC-category induced by (A, ■). Then C(A) has weak finite coprod- 
ucts. 

Proof. The weak initial object 0 is the terminal object 1 in Q, i.e., Xx. K. 
For any other object X in C, the always undefined partial function is a 
morphism from 0 to X. 

The weak binary coproduct of objects X and Y is X—'^X + Y < K'   Y 
with 

X + Y = Xz. if TTz = K then (K, X(TT'Z)) else (KI, Y(n'z)), 

which is yl-definable in a standard way, and with 

K = XX. (K,Xx) 

K' = XV. (KI, Yy). 

Note that K and K' are both total, as required. 

Suppose now given a diagram X ^Z*J-—Y in C. Then 

u = Xa. if 7ra = K then f(w'a) else g{ir'a) 
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is an ^-definable partial function, which is a morphism in C making the 

diagram 

Y^—Y 

commute, as required. D 

Corollary 3.4.10. Let (A, •) be a partial combinatory algebra and let C(A) 

be the WCPC-category induced by {A,-). The realizability pretripos over 

C(A) has split disjuiiction. 

Proposition 3.4.11.  The category ALat has weak finite coproducts. 

Remark 3.4.12. The category ALat does not have true finite coproducts 
because it is cartesian closed and it has the fixed point property (i.e., every 
endomorphism has a fixed point), see [HP90]. Thus, to get the desired 
Corollary (3.4.14), it really is important that Proposition 3.4.8 only requires 
weak coproducts. 

Proof. Any object A in ALat (necessarily with a non-empty underlying set) 
is a weak initial object: for any object B, the constant _L function from A 

to B is a morphism in ALat. 
For the weak coproduct of A and B in ALat, view A and B as objects of 

Top0 and let A—^~A + B-*^-—B be the coproduct of A and B in Top0. 
Then use the embedding theorem (see, e.g., [GHK+80, Lemma 3.4, (ii)]) 
to embed A + B into an algebraic lattice C, via an embedding i. We now 

show that A *°h>C <°h B is a weak coproduct in ALat. Let X be any 
other algebraic lattice and suppose /: A —» X and g: B —> X in ALat. 
View X, f and g in Top0. Then there exists a unique continuous function 
u: A + B —> X in Top0 such that / = u o K and g = u o K'. NOW consider 
the following diagram in Top0. 
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Since A" is an algebraic lattice, it is a continuous lattice. Hence X is an 
injective object in Top0 with respect to subspace embeddings [GHK+80, 

Section II.3]. Thus the map A + B " > A' extends along the subspace in- 
clusion A + 5C >C to a map v from C to A' such that the diagram above 
commutes. This completes the proof of the proposition. □ 

Remark 3.4.13. A concrete representation of a weak coproduct 

A-^-^C^—B 

in ALat of A and B can be obtained by letting C = Sigma2 x A x B 
(£ = {-L < T}), and letting 

i:A^C = x^{[±.,T),x,LB) 
i':B^C = x^((T,±),_LA,x). 

Corollary 3.4.14. The realizability pretripos over ALat has split disjunc- 
tion. 

Proof. By Theorem 3.4.8 and Proposition 3.4.11. □ 

Realizability Pretriposes and Universal Objects 

Example 3.4.5 is an instance of a more general phenomenon, which we now 
describe. For the remainder of this subsection we assume that the reader 
is familiar with tripos theory, see Chapter 5. Let us say that a category C 
has a universal object V if all objects X in C are retracts of V. Observe 
that C(^) has a universal object, namely id A (as implicitly explained in 
Example 3.4.5). We can now show that (when U is faithful) the realizability 
pretripos over such a category C has a generic object just in case C has a 
universal object. 

Theorem 3.4.15. Let C be a WCPC-category and suppose U: C ->• Ptl is 
UFam(Q 

a faithful functor. Then C has a universal object if and only if      1       has 
Set 

ß generic object. 

Proof. Suppose C has a universal object V. We then claim that 

{V,id: P(UV)->P{UV)) 
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UFam(C) 
is a generic object for       4-      ■ To show the claim, suppose that (A,(p: I —)■ 

Set 
PUA) is any predicate in the fibre over I. Then by the assumption on C, 
the object A is a retract of V, that is, there are morphisms r and s in C 

A — V 
s 

such that rs = id A- Since U(rs) = U(r)U(s) = U(id) = id, we have that 
U(s) is a total function. Thus P(Us) is a morphism from P(UA) to P(UV) 
in Set. We now show that (A, </?) = {P(Us) o (p)*(V, id) in the fibre over /, 
which completes the proof of the claim. Recall that (P(Us) o <p)*(V, id) = 
(V, P(E/s) o y>). Clearly s is a realizer for (A, <p) h (V, P(E/s) o </?), since E/(s) 
is total. For the other direction, note that r is a realizer for (V, P(Us)o<p) h 
(A, <f), since for all i G /, all a G P(Us)(<p(i)), we have that a = E/(s)(&) for 
some b G <p, so U{r)(a) = U(r)(U(s)(b)) = b G <f. 

UFam(Q 
For the other direction suppose that       4,       is a that there is a weak 

Set 
generic object (W,ip: V -> P(UW), over some V" G Set. Let i 6 C be 
arbitrary. We show that A is a retract of W to conclude that W is a universal 
object in C. Consider the predicate (A,<p) over U(A), with tp: U(A) ->■ 
P(E/A) the function a i->- {a}. Since (W,ip) is a weak generic object, there 
exists a morphism /: U(A) -> V in Set, such that 

(A,<p)*r(w,ti>) 

in the fibre over UA. Hence there are morphisms s: A —> W and r: W —> A 
in C such that 

Va G E/A V6 G ¥>(a). U{s)(b) I and E/(s)(6) G ^(/(a)) 

and 

Va G E/A. V6 G V>(/(a)). E/(r)(&) | and U(r)(b) G ¥>(a). 

Recalling that <p(a) = {a} we get that 

Va G E/A. E/(r)(E/(s)(a)) | and E/(r)(E/(s)(a)) G <p(a) = {a} 

so 

VaGE/A. U(rs)(a) = a 

and thus E/(rs) = iduA- Since E/ is faithful by assumption, we conclude that 
rs = io^ in C, thus completing the proof that A is a retract of W. D 
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Corollary 3.4.16. Let C be a WCPC-category with weak finite co-products 
and suppose U: C -> Ptl is a faithful functor.  Then C has a universal object 

UFam(C) 
if and only if       J,       is a tripos. 

Set 

Proof. Immediate from Theorems 3.4.15 and 3.4.8. D 

Remark 3.4.17. For C be a WCPC-category, the tripos-to-topos construc- 
UFam(C) 

tion applied to       I       yields a category which is equivalent to the exact 
Set 

completion (Asm(C) )ex/reg of Asm(C). Indeed Asm(C) is a reflective sub- 
category of (Asm(C) )ex/reg. Hence some of the results we present in the 
following (such as Theorem 3.5.1) could also be obtained by showing that 
(Asm(C) )ex/reg has certain good properties which are then reflected down 
to Asm(C). For concreteness, however, we have decided to show directly 
that Asm(C) has the properties we are interested in. For more remarks on 
the relation to categories obtained via exact completions, see Section 3.8. 

In fact, we can strengthen the above results to characterize exactly when the 
UFam(C) 

tripos-to-topos construction applied to       I       yields a topos. To do so we 
Set 

apply a. result of Pitts who characterized (in 1982) when the tripos-to-topos 
construction applied to a pretripos with disjunction yields a topos [Pit99]. 
(Pitts calls a pretripos with disjunction a hyperdoctrine.) Pitts showed 
in particular that the tripos-to-topos construction applied to the pretripos 
UFam(C) 

i        (for C a WCPC-category) yields a topos iff the following axiom 
Set 

holds:5 

Axiom 3.4.18 (CA). For all sets X there is a set PX and a predicate 
Inx e UFam(C)XxPX such that, for any set I and R £ UFam(C)Xx/) the 
sentence 

Vi: /. 3s: PX. Vx: X. lnx(x,s) DC R(x,i) 

UFam(Q 
is satisfied in       J, 

Set 

In fact, Pitts assumed that the pretripos has disjuction, but going through his proof 
one sees that disjunctions are not needed. 
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Theorem 3.4.19. Let C be a WCPC-category and suppose U: C -> Ptl 
UFam(C) 

is a faithful, functor.   Then C has a universal object if and only if       \. 
Set 

satisfies the axiom (CA). 

UFam(C) 
Proof. By Theorem 3.4.15, if C has a universal object, then        J,       is a 

C 

tripos and thus it also satisfies the axiom (CA). 
UFam(Q 

For the other direction, suppose that       J,       satisfies the axiom (CA). 
C 

Let X = 1 and let £ denote the object PX in (CA). Let V G C be the 
underlying object of In = Ini, which exists qua (CA). We show that V 
is a universal object in C. Let A € C be arbitrary, let / = UA and let 
R(a) = {a}. By (CA) the following sentence is valid in the realizability 
pretripos: 

Va: UA. 3s: S. In(s) DC R(a). 

Thus there is a realizer in 

PI   ( U In(s) DC R(a)) C U([V - A] X [A - V']). 

It follows, as in the proof of Theorem 3.4.15, that A is a retract of V.      D 

Remark 3.4.20. When I first tried to show the theorem above (using the 
same idea as is currently employed in the proof), I failed to see that what 
I had written down was actually a proof. It was not until I saw a very 
similar proof of Peter Lietz and Thomas Streicher [Lie] that I realized that 
it worked. See Section 3.9 for a description of the relation of our work to 
the work of Lietz and Streicher. 

Corollary 3.4.21. For C be a WCPC-category and U: C -> Ptl a faithful 
UFam(C) 

functor, the tripos-to-topos construction applied to       4-        yields a topos 
Set 

iff C has a universal object. 

A further corollary is that the tripos-to-topos construction applied to the 
realizability tripos induced by the category of algebraic lattices does not 
produce a topos, since clearly ALat does not have a universal object (for 
cardinality reasons). 
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Readability Preriposes and Splitting of Total Idempotents 

UFam(C(4)) 
One may also observe that I is equivalent, as a preorder fibra- 

Set 
UFam(MfA)) 

tion over Set, to I , where M(A) is the monoid of partial A- 
Set 

definable functions. This observation is also an instance of a more general 
phenomenon, which we now describe. 

Let C be a category and let U: C -»• Ptl be a functor. Define Split (C, U) 
to be the category with objects the idempotents of C that are mapped by U 
into Set and with morphisms /: X -> Y morphisms / in C satisfying that 
YfX = /. The identity on X is X itself and composition of morphisms is 
composition in C. The functor U induces a functor Split(U): Split (C, U) ->• 
Ptl6 defined by setting Split(£/)(A) equal to the image of U(X) for an 
object A' (recall that X is an idempotent X: A ->■ A in C) and by setting 
Split (£/)(/) = / for a morphism /. Observe that C(A) is Split(M(A), U0) for 
U0: M(A) -> Ptl the inclusion functor and that U: C(A) -> Ptl as defined 
on Page 39 is Split (U0). 

Proposition 3.4.22. Let C be a category and let U: C -» Ptl be a functor. 
UFam(C) UFam(SpIit(C)) 

Then       X       is equivalent, as a preorder fibration, to J, 
Set Set 

Proof. The proof is essentially as in Example 3.4.5 (define functors F and 
G in the same manner to prove the equivalence). □ 

3.5    Assemblies over Pretriposes 

Let  \p be a pretripos. Recall from Remark 3.4.2(ii) that p then in particular 

is a regular fibration. Therefore we may construct the category of assemblies, 
Asm(p), over it. In this section we show that Asm(p) is locally cartesian 
closed. Moreover, we show that if p has disjunction, then Asm(p) has finite 
coproducts. 

E 
Theorem 3.5.1. Let  >  be a pretripos.  Then Asm(p) is locally cartesian 

Set 
closed. 

6The functor Split(C/) really arises because Split(-) in a suitable sense is a 2-functor 
and Split(Ptl, id) is equivalent to Ptl. 
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Proof. By Proposition 3.3.3 we already know that Asm(p) is regular, so 
it suffices to consider local closure. It suffices to show, see, e.g., [Jac99, 
Proposition 1.9.8], that for each morphism u: (I, Ei) -)■ (J, Ej), the pullback 
functor 

u*: Asm(p)/(J, Ej) -> Asm(p)/(7, £/) 

has a right adjoint n„- We define ]Ju 
as follows. Let ip: {X, Ex) -> (7, Ej) 

be an object over (7, £/). Then set IIM(^) = i>, where the domain of i> is 

( Ujej { f ■■ il e 7 I "(0 = i} -+ x I v(/W) = ' and W valid in P} ' 
*). 

and 

£?(/) =f Vi: {i € 7 | «(f) = j}. £7(0 D Ex(f(i)) 

E{jJ) = Ej{j)AE'3U) 

$Uif) = j- 

It is easy to see that the domain of ip is a well-defined object and that ip is 
a well-defined morphism into (J, £j). 

For a morphism /: <p —> <p' in Asm(p)/(7, JE1/), we define 

n„(/) = (i.*)->ü\/<>*)• 
It is straightforward to verify that this operation is well-defined. 

Let ip and ib = üu^) De as above and suppose £: (Y, TV) —>■ (J,Ej). 
We are to show (confusing an object in the slice category with its domain) 
that 

u*(Y, TV) *- (A, TA-) in Asm(p)/(J, Tj) 

where 

(Y, TV) > n„(A, T*) in Asm(p)/(J, Tj), 

u*(Y,EY) = ({(i,y) I «(i) = ((y)},EiAEY). 

Suppose /: u*(Y,Ey) ->■ (A, Tx). Then define its transpose to be / = 
V *-> (({y)->^i- f{hy))- Note that / is a morphism: under the assumption 
that Ey(y), we are to show that E(f(y)), that is, E(C{y),Xi. f{i,y)) = 
Ej(C{y)) A EL Jf). But Ej(((y)) holds as £ is a morphism and 

y: Y | Ey(y) h T^}(/) = Vi: {i G 7 | u(i) = C(y) }• £/(*) D Ex(f(i,y) 
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holds by the assumption on /. Thus / is a morphism in Asm(p). Moreover, 
it is a morphism over (J, Ej) because clearly ipf = (. 

For the other direction, suppose that g: (>', Ey) -)■ Ylu(X,Ex) over 
(./,£/). Then define g: u*(Y,EY) -» (A', Ex) by (i,y) -» n'(g(y))(«). Note 
that the application of n'(g(y)) to i is well-defined, that is, i is really in 
the domain of n'{g{y)) because u{i) = ((y) and n(g(y)) = 4>{g{y)) = ((y) 
since g is a map from ( to V' over (J, Ej). To verify that g is a well-defined 
morphism in Asm(p) we are to show that 

{ (i, y)£lxY\ u(i) = C(y) } | Ej(i) A Ey(y) h Ex(ir'(g(y))(i)), 

but this holds because g is a morphism. Finally, g is a morphism over (/, £», 
that is, fog = u*(Q because «*(C)(i, y) = i and ^oy(/, y) = <p(ir'(g(y)){i)) = 
i since n'{g(y))(i) € </>-1('<:) by assumption. 

We have now defined the transposes. It is straightforward to see that 
they constitute an isomorphism, that is, / = / and g = g (for the latter use 
that g is a map in the slice category). The correspondence is natural and 
we thus have the required adjunction. □ 

E 
Remark 3.5.2. For   \p  a pretripos, the functor V: Set ->• Asm(p) (see 

Definition 3.3.4) preserves exponentials and Set is an exponential ideal of 
Asm(p) since Set is a full reflective subcategory and the reflector U pre- 
serves finite products, see Propositions 3.3.5 and 3.3.6. 

E 
Theorem 3.5.3. Let   \p   be a pretripos with disjunction.   Then Asm(p) 

Set 
has finite coproducts. 

Proof. The initial object is (0, ±0) (trivially an object in Asm(p) since there 
are no global elements). For any object (A, Ex), the unique function ! from 
0 to A in Set is also (the unique) morphism in Asm(p) from (0, ±0) to 
(A, Ex), since trivially, x: 0 | _L0 h Ex{\(x)). 

The coproduct of (A, Ex) and (Y, Ey) is (A + Y, E), where 

X—2-+X + Y^—Y 

is the usual set-theoretic coproduct and where 

. (3a:: X. v = t 

{3y:Y. v = n'(y) A Ey(y)). 
v:X + Y\E(v)=    (3x:X. v = K(X) A Ex{x))v 
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Note that (X + Y, E) is indeed a well-defined object and that clearly 

K : (X, Ex) -> (X + Y E)       and       K : (Y, EY) -> (X + Y #) 

are morphisms in Asm(p). Suppose 

/:(*,£■*)->(£,%)    and    g: (Y,EY)-+(Z,EZ). 

Then there exists a unique map u: X + Y —» Z in Set such that uo K = f 
and UOK' = g. It suffices to verify that M is also a map (X + Y, E) —» (Z, .E^) 
in Asm(p), i.e., that 

«: A' + y | E(v)\-Ez(u(v)) 

holds in the logic of p. But that is easy to see, arguing in the internal 
language of p and using that external equality implies internal equality.    D 

It follows from Corollary 3.4.10 that the category of assemblies constructed 
over the realizability pretripos over the WCPC-category induced by a PCA 
has finite coproducts. Likewise, by Corollary 3.4.14 we get that the category 
of assemblies constructed over the realizability pretripos over the category 
of algebraic lattices has finite coproducts. 

3.6    Assemblies over Realizability Pretriposes 

UFam(C) 
Let C be a WCPC-category and let       \p      be the realizability pretripos 

Set 
over C, cf. Section 3.4.1. In the preceding section we saw that Asm(p) 
then is locally cartesian closed. Referring to Seely's [See84] seminal work, 
we therefore have a model of dependent type theory. However, there are 
some problems with interpreting dependent type theory directly in locally 
cartesian closed categories. The main problem is to make sure that the 
actual interpretation function is well-defined, which is problematic because 
the substitution functors (pullback functors) do not commute on the nose 
but only up to (canonical) isomorphism. See for example, [Luo94, Pit95, 
Mog95, Reu95, Hof94] for a more thorough discussion of this issue. 

We shall therefore make a point of describing a model of dependent 
type theory in a so-called "split" way, so as to avoid the problems with 
interpreting dependent type theory. 

For the technical development, we make use of B. Jacobs' fibrational 
description of models of dependent type theory [Jac91, Jac93, Jac99], which 
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is related to display-map categories [Tay86, HP89], categories with attributes 
[Car78, Mog91], D-categories [Ehr88], and thorough fibrations [Pav90]. See 
[Jac93] or [Jac99] for a comprehensive introduction. We recall the needed 
definitions below in Section 3.6.1 and then in Section 3.6.2 we show how 
to define a split fibration which is equivalent to the codomain on Asm(p) 
and which thus models dependent type theory. Our treatment generalizes 
the results for assemblies and modest sets over partial combinatory algebras 
(see, for example, [Jac99]) and assemblies and modest sets over algebraic 
lattices [BBS98], see Examples 3.6.10 and 3.6.11 in Section 3.6.2. 

In Appendix A we present the calculus of dependent type theory and 
sketch how it is interpreted in very concrete terms for the particular case 
of modest sets over algebraic lattices (see Section 3.7 for modest sets). For 
the reader who is not familiar with closed comprehension categories and the 
interpretation of dependent type theory in such, it may be useful to read 
Appendix A in parallel with the more abstract treatment in this section. 

In Subsection 3.6.3 we show that for assemblies over realizability pretri- 
poses with disjunction, the finite coproducts in Asm(p) (see Theorem 3.5.3 
in the previous section) are disjoint and stable under pullback. 

3.6.1     Comprehension Categories 

In this subsection we recall the notion of a comprehension category and 
some accompanying definitions from [Jac99, Section 9.3] and [Jac93]. In 
the mentioned references, the connection between comprehension categories 
and so-called weakening and contraction comonads is described in detail; 
we shall not need those concepts here. We remark that the definition of a 
comprehension category is inspired by Lawvere's categorical notion of com- 
prehension [Law68]. 

E 
Definition 3.6.1. Let \p  be a fibration and let V: E -» B~* be a functor 

B 
satisfying 

1. codo'V = p: E-> B; 

2. for each cartesian map / in E,  the induced square V(f) in B is a 
pullback. 

Such a functor V will be called a comprehension category (on p). We 
shall often write {-} = domo^: E -> B. Thus V is a natural transforma- 
tion {-} => p. 
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Such a. comprehension category V will be called full if V is a full and 
faithful functor E —> B-*'. And it is called split (or cloven), whenever the 
fibration cod o V = p is split (or cloven). 

Note that it is not required that the base category B has all pullbacks. 

Definition 3.6.2. Consider a comprehension category V: on \p 

and a fibration \.i in a situation 

1. We say that q has T'-products (resp. coproducts) if there is for each 
X G E an adjunction 

(VXy^Ux        (resp. II*-I (P*)*) 

plus a Beck-Chevalley condition: for each cartesian map /: X —>■ Y in 
E, the canonical natural transformation 

(Pf)* UY =» n.Y {/}*        (resp- Ux UV =► (Pf)* UY) 

is an isomorphism. 

2. We say that q has "P-equality if for each X £E there is an adjunction 

Eqx-\6*x, 

where Sx is the unique mediating diagonal 

(id,id):{X}-+{(VXr(X)} 

in 

id \ _l 
vx 

v 
{X} vx 
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where n = P((P !)*(!)) and n' = {VX(X)} are the pullback pro- 
jections. Additionally, there is a Beck-Chevalley requirement: for each 
cartesian map f: X -> Y e E, the canonical natural transformation 

Eq.Y{/}* =* {/TEqy 

should be an isomorphism—where /' is the unique morphism in E over 
{/}in 

1/ f V 
x -y 

Example 3.6.3. Let B be a category with finite limits. Then id: B^ -> B^ 
B"+ 

is a comprehension category on the codomain fibration   1 .  Products and 
B 

coproducts with respect to this comprehension category are products and 
coproducts along all morphisms in B.   The diagonal on a family X ->■ / is 
the mediating map X —» X X/ X. 

Convention 3.6.4. Let P: E ->■ B^ be a comprehension category and 
write p = codoP: E -» B for the fibration involved. For an object X 6 E, 
the corresponding morphism V X in B will be called a projection or a dis- 
play map. We therefore often write nx for PI, when the functor V is 
understood from context. An induced reindexing functor TC*X = (PI)* will 
be called a weakening functor. 

E 
Definition 3.6.5. A fibration \p with a terminal object functor 1: B ->■ E 

B 
is said to admit comprehension if this functor 1 has a right adjoint, which 
we commonly write {-}: E ->■ B. We then have adjunctions 

HUH 

In this situation we get a functor E —v B-* by X H^ p{ex), where ex is 
the counit 1{I} ->• I of the adjunction (1 H {-}) at I. This functor is 
actually a comprehension category, see [Jac99, Page 574] or [Jac93]. In such 
a situation, we shall call this functor a comprehension category with 
unit. And we shall say that p admits full comprehension if this induced 
comprehension category is full (i.e., E -* B^ is a full and faithful functor). 



3.6 Assemblies over Realizability Pretriposes 69 

Definition 3.6.6. Let V: E —>• B-*' be a comprehension category. We say 
E 

that V has products if its underlying fibration IP —where p = cod o V— 
B 

has products with respect to the comprehension category V: E —> B~^, see 
Definition 3.6.1. 

E 
Similarly we say that V has coproducts if the fibration 4, has coproducts 

B 
with respect to V. 

E 
And V has equality if \, has equality with respect to V. 

B 

Definition 3.6.7. Let V: E ->■ B"^ be a comprehension category. 

1. We say that V has strong coproducts if it has coproducts as above 
in such a way that the canonical maps K are isomorphisms in 

{Y} {II* CO}" 

{X} pX. 

2. Similarly, V has strong equality if we have canonical isomorphisms 

{X}—*{**(*)}. 

The canonical maps {Y} ->■ {UY(^')} 
and {Y} ->■ {Eqx(Y)} arise by ap- 

plying the functor {—} = dom oV to the composites 

Y^>**xUx(Y)-+Ux{Y) and Y^SxEqx(Y)-+Eqx(Y) 

Definition 3.6.8. A closed comprehension category (CCompC) is a 
full comprehension category with unit, which has products and strong co- 
products, and which has a terminal object in its base category. It will be 
called split if all of its fibred structure is split. 

For details of how to interpret dependent type theory in a closed com- 
prehension category (and a detailed account of the exact rules of dependent 
type theory), see [Jac99]. See also Appendix A for a concrete example. 
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3.6.2    A Model of Dependent Type Theory 

UFam(C) 
Let C be a WCPC-category and let        \p      be the realizability pretripos 

Set 
over C. Note that an object in Asm(p) is of the form (X, {A, E)), where A' 
is an object in Set and (A, E) is an object in UFam(C) Y, that is, A is an 
object in C and E is a function X ->• P(UA). 

Convention 3.6.9. We write objects (A, (A, E)) £ Asm(p) as triples (A, A, E), 
leaving out a pair of parentheses. 

Note that the condition on objects (A", A, E) in Asm(p) regarding global 
elements now simplifies to the familiar [Lon94, BBS98] condition Vx £ 
A. E(x) ^ 0. Indeed the following two examples show how our setup spe- 
cializes to the cases of assemblies over PCA's and over algebraic lattices. 

Example 3.6.10. Let A be a PCA. Recall from Example 3.4.5 that the 
UFam(C(i)) 

induced realizability pretripos \p        is equivalent to the standard re- 
Set 

alizability tripos over a A. Since the first-order structure is defined categor- 
ically, it is preserved by the equivalence functors. From the preceding it is 
easy to verify that the category Asm(p) of assemblies over p is equivalent to 
the usual category of assemblies Asm(A) over A as defined, e.g., in [Lon94]. 

UFam(ALat) 
Example 3.6.11. Let \p        be the realizability pretripos over ALat. 

Set 
Then Asm(p) is equivalent to the category of assemblies over ALat as 
defined in [BBS98]. 

Convention 3.6.12. For C a WCPC-category, we often write Asm(C) for 
Asm(p) where p is the realizability pretripos over C. (This choice of notation 
is in accordance with [BBS98], where we write Asm(ALat) for the category 
of assemblies over ALat.) 

We now proceed to show how to define a split closed comprehension 
category for the category of assemblies over a realizability pretripos, thus 
obtaining a model of dependent type theory. Our definitions and results are 
generalizations of corresponding results for assemblies over partial combina- 
tory algebras and assemblies over algebraic lattices, see [Jac99] and [BBS98]. 

Convention 3.6.13. For the remainder of this section, let C be a WCPC- 
UFam(Q 

category and let       \p      be the realizability pretripos over C. 
Set 
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Definition 3.6.14. Define UFam(Asm(p)) to be the category with 

objects triples (7, A, (Xi, E^izXj), where 

/=(X/lA/,JJ/)eAsm(p), 

and (Xi, A, E{) e Asm(p), for all i € A'j. 

morphisms    (7, A, (A;, Ei)ieXl) ->■ (J, ß, (lj, £j)jeA'j), with 

7 = (Aj, A7, £j)        and        J = (Xj, Aj, Ej), 

are pairs 

(/) ifi)ieXj) 

such that /: 7 —>• J in Asm(p) and such that 

0 | 0 h Vi: A/. V.T: X,-. £/(*') D (£■,•(*) D %)(/,•(«))) 

(3.4) 

is valid in the logic of p. 

The identity on object (7, A, (Xi, Ei)iexj) with 7 = (Xj, Aj, Ef), is 

(id,(idi)ieXl). 

The composition of (/, (/;);ex7) and (5, (gj)jex-j) is (5 o /, (#/(i) o fi)iexj)- 

Remark 3.6.15. Categorically, the second quantifier in (3.4) is given as W 

with 7T the projection UJGä'J -^» "^ -^ m Set. Tne ^ ^n UFam(Asm(p)) 
refers to the fact that a family (7, A, (Xi, Ei)i€Xi) over an object 7 is uniform 
in the sense that all the existence predicates Ei have the same underlying 
object A € C as object of realizers. 

Proposition 3.6.16. 77*e forgetful functor UFam(Asm(p)) —>• Asm(j)) 
Sröera 6y (7, A, (Aj, Ei)ieXl) H> I and (/, (/;);eA'7) >-> f is a split fibration 
which is equivalent, as a fibration, to the codomain fibration over Asm(p). 

Proof. Let (J,B, (Yj, EJ)J€XJ), with J — (XJ,AJ,EJ), be an object in the 
category UFam(Asm(p)) and suppose u: I —>• J in Asm(p) with 7 = 

(Aj,Aj,7ij). Then we can form a family u*(J, B,(Yj, E'j)jexj) over 7 as 
(7, 7?, (y„(j), E^,i,)iexI)- There is then an associated cartesian lifting 

(«, (MO.-gjo): (7, B, (y„(i), E'u{i))ieXl) -► (7, B, (Yi; ^j)jgXj) 
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over u. This choice of liftings forms a splitting. 
Define the functor V as in 

UFam(Asm(|j))  ■ Asm(p)" 

Asm(p) 

by mapping an object (/, A, (A",-, Ei)ieXl), with I = (A'/, Ah Ei), to 

(UieXlXuAIxA,E)^I, 

with 

(*'. *) = IL6Jr, ^ h £(<;, *) =f £/(0 A E(x). 

(In more detail, note that Ei: A',: ->■ P(£7A) so may be viewed as a function 
IlteA'j^' ~* P(U(A)), (VT) ^ ^K3-')) *-e-> a predicate in the fibre over 
IlieA'j^' m tne fibration p. Furthermore, £>: Xj ->• P(fL4j) is a pred- 
icate over A"/, so may be reindexed to a predicate n*(Ei) over jJieX Xi 
(where w: UieXl 

xi ~> xl)- Finalby, E can be defined as the predicate over 
MieXj xi which is the conjunction of TT*(EI) and Ei. Note that E thus is a 
function II,-GA',*.- -> P(f/(^/ X A)).) 

The functor P maps a morphism 

(«, (/OieAv):' (/, A, (Xi, Et)ieXl) -> (J, 5, (y„ £j)j6Jrj), 

with / = (A7, Ai, Eft and J = (Xj, Aj, Ej), to the square 

(Uiex, Xi, Ai xA,E)±!Ü (]Jj€Xl Y3, Aj x B, E') 

y 

where {u, /} is the function (i,x) i-* (u(i), fi(x)).   We are to show that 
{«,/} is a well-defined morphism in Asm(p), i.e., that 

(*» *): ILex7 ^ | £(i, a-) h E'(u(i),fi(x)) 

holds in the logic of p. Unwinding the definitions this amounts to showing 
that 

*'. *) = Ui€Xl X I Ei(i) A E(x) r- Ej(u(i)) A <(,■)(/,■(*)) 
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holds in p, but this holds since (u, (/i)ieA'/) is a morphism in the category 
UFam(Asm(p)). 

One can now verify that V is a full and faithful fibred functor. Moreover 
we can define a fibred functor Q: Asm(p)~* -> UFam(Asm(p)) mapping 
<p: X -> I, with I = (XI,AI,EI) and X = (Xx,Ax,Ex) to the family 
(I,Ax,(Xi,Ei)iexr) with Xi = f~l{i) and E{(x) = Ex{x). A morphism 
(w, /) as in 

is mapped by Q to (w, (/)ie.Y/)- It can then be verified that Q is also a 
fibred functor and that PQ = id vertically and that QP = id vertically.    D 

UFam(Asm(p)) 
Consider the fibration J, . It is easy to see that 

Asm(p) 

(I, 1<C, (lSet, Ti)ieA-j) 

is the terminal object in the fibre over I = (XI,AI,EI), where lc is the 
terminal object in C and lset = {*} is the terminal object in Set. The 
terminal object functor 

1: Asm(p) —> UFam(Asm(p)) 

maps an object I — (Xj, A/, Ej) to the terminal object over / and a mor- 
phism u: I —> J to the morphism (u, (Xx. *)i£Xj)- Define the functor {-} 
by 

{-} = domoP: UFam(Asm(p)) —>• Asm(p). 

Lemma 3.6.17. The functor {-} is right adjoint to the terminal object 
functor 1. Moreover, 1 is full and faithful. 

Proof. It is straightforward to see that, for any / G Asmfp), we have I = 
{1(/)}. Thus the unit rj: id =^> {} o 1 of the adjunction is an isomorphism, 
and hence the left adjoint 1 is full and faithful [Mac71, dual of Theorem 1, 
Page 88]. □ 

Since V (defined in the proof of Proposition 3.6.16) is full and the terminal 
object functor has a right adjoint we get the following corollary. 
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Corollary 3.6.18.  The functor V: UFam(Asm(j;)) ->■ Asm(p)"J' is a split 
full comprehension category with unit. 

We now proceed to show that the comprehension category has split prod- 
ucts and strong split coproducts. To this end, let X = (I, A, (A',-, Ei)ieXl) be 
a family over / = (A/, Ah £,) and let nx : {,¥} = (IJ-e_Yj A;, ArxA, E) -»• 7 
be the associated projection. We are to show that n*x has a right adjoint 
Y[x, which satisfies the Beck-Chevalley condition. Define 

Ylx ((LUx, *, ^ x A, E),C, (Zk, ^JJ^ A.) 

to be 

(l,W,(Ui,Ei')i€Xl), 

where W = [1 ->■ [A -± C]] is the weak partial exponential of 1 and and 
[-4 -^ C], the weak partial exponential of A and C in C and where 

Ui = {f:Xi^   (J Z(iiar) | Vx e X{. f(x) e Z(t>) and £"/'(/) is valid in p} 
x £ A', 

/: £/,- | £/'(/) d4f V.T: X{. Et(x) D %)(/(*)). 

Remark 3.6.19. It may be useful to explicitly state how the existence 
predicate E" is interpreted in the readability pretripos. Recall that for 
each i e A"/, we are given a set A~; (an object in the base category) and a 
predicate 

(A,Ei)eVFam(C)Xt 

in the fibre over A',-. We omit the A in the following. Moreover, for each 
(i, x) e YiieXj Xi we are given a predicate 

(C,£(WeUFam(CW 
,x) 

in the fibre over Z^xy   We omit the C in the following.    Consider the 
following diagram 

Ek (*"% D a*E'{itS)) E[hx) V^i* D a'£ff>)) 

Xi ■* - Ui X Xi *- Z(i,x) ^ Ui, 



3.6 Assemblies over Realizabihty Pretriposes 75 

where a is the function (/, x) H* f{x). The bottom row is in the base 
category and the columns above each object in the base shows objects in 
the fibre over the corresponding base object. For example, E, is above X{ 
because E{ is in the fibre over X{. The predicates E, and E',{s are reindexed 
to the fibre over U{ X X{, as shown, and the implication of the resulting 
predicates is formed there. Then the \f7r functor is applied to get the resulting 
predicate over U,. This is the predicate E" defined logically above. Note 
that n'*Ei and a*E',: > have the same underlying objects of realizers (A and 
C) as Ei and Elixy By the definition of D in the realizabihty pretripos, the 

underlying object of realizers for (n'* Ei D a*E',ix.) is the weak exponential 
[A -L C] of A and C. Then W = [1 ^ [A ->> C]] is the underlying object of 
realizers for the resulting predicate obtained by applying W That explains 
why we above use W as the object of realizers for the family (U, E")iexj- 

The action of Ylx on a morphism (id, (f(i,x))a x\e]]       _Y ) 1S defined to 

be (id,(g\-+ Xx € Xj. /(j»(<7(a0))«'ex7), which is easily seen to be a well- 
defined morphism. 

We now proceed to show that we have an adjunction 

UFam(Asm(p))7    x ' UFam(Asm(p)){/V}, 

n7 
that is, 

wx(I, B, (Yi, Ei)ieXl) > {{X}, C, (Zk, E'k)keUt€Xl xt) 

(I, B, (Yi, Bk)ieXl) — Ux ({X}, C, (Zk, E'k)ke]ltexi x) 

Using the definitions of nx and Yix we are to show 

({X}, B, (Yt, Ei)MeUi€Xix) — ({X},C, (Zk, K)ke]leXix) 

(/, B, (Y, Efrexj)  (/, W, (Ut, E';')teXl) 

Thus suppose (id, (g(i,x))(i x)e]],      A') is a morPhism 

({*}, B, (Y, Bk)^)e]L      Xi) -^ ({X},C, (Zk, E'k)keUteXiXi)- 
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We define the transpose of this morphism to be 

(id, (y ^ Xx e A"/. flf(,»(y))fgA'7)- 

We have to show that it is a well-defined morphism from ,(/, B, (Y;, Ei)i€Xl) 
to (I,W, (Ui, E'/)teXl) in UFam(Asm(p))r. Thus we are to show that 

0 | 0 r- Vi: A7. Vy: }■. £7(i) D (£,-(y) D £("(A* e XT. g{hx)(y))) 

is valid in the logic of the realizability pretripos p. Arguing in the logic of p, 
let i: A'/ and y: >;• and suppose that E^i) and £;(y). Then for any x: A?- 
such that £;-(ar) we have, by the assumption that (id, (giix))..      TT       v ) 

v > ■; («,^)ej_l;eX/ A,' 

is a morphism, that E^x)(g^x)(y)), as required by the definition of £/'. 
For the other transpose, suppose that (id, (hi)i€Xl) is a morphism from 

(I,B,(Y,Ei)ieXl) to (/,W, ([/,-, £f).-ex7) in UFam(Asm(p));. We define 
its transpose to be 

(id,(y^hi(y)(x)){ix)ejj^^X)). 

This is a well-defined morphism because, arguing in the logic of the real- 
izability pretripos p, for all (i,x): UieX/A8-, for all y: Yl: supposing that 
E(i,x) and £*(y) we have that E^x)(hi(y)(x)), by the assumption that 
(id, (hi)ieXl) is a morphism. 

It is straightforward to verify that the transposition operations are in- 
verses and suitably natural. (The point is that the transposes are as in the 

Fam(Set) 
family fibration        i        (see [Jac99]); all we really need to verify is that 

Set 

the transposes are well-defined morphisms but this we have already done.) 
Thus we have now shown that n*x -\ TJX. 

For the Beck-Chevalley condition we are to show that for a pullback 

(LLex, XU{1), Ä! xB,E){-^l (UjeXj X3, Aj x B, E') 

Kx ■Ky 

J 

in Asm(p), we have that the canonical natural transformation 

u* Uy => Ux {«. idY 
is an identity (not only iso, because we claim to have split products). This 
is tedious but straightforward to verify. 
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For the comprehension category to have strong split coproducts (mod- 
elling dependent sums) we need, with notation as in the previous para- 
graph, to have left adjoints \JX to irx for projections wx, satisfying a Beck- 

Chevalley condition. Define 

IXY ((Uiexj X« M x A, E),C, (Zk, E'k)keUi€Xi A.) 

to be 

(I, A x C, ({ (x, z)\xe Xi and z € Z(i^x) },-, E'{)ieXl), 

where, for all i € A'/, 

(*, z): { (x, z) | x e X, and z e %,) },- | E'^x, z) d^f E(x) A E^x)(z). 

On a morphism (id, {f(i,x)){itX)e]J.      Xi) 
we define Ux to §ive 

(id, ((x,z) H> (x,f(iiX)(z)))ieXl), 

which is easily seen to be a well-defined morphism. 
We leave the verification of the adjunction ]JX H itx to the reader. 

Fam(Set) 
(Again, the proof is essentially as for        \.       and one just has to verify 

Set 
that the transposes are well-defined morphisms by arguing in the logic of 
the realizability pretripos p.) 

Again it is straightforward to verify that the Beck-Chevalley condi- 
tion holds, i.e., referring to the pullback in the previous paragraph, that 
]JX {u, id}* =>• u* ]\y is an identity. This shows then that we have split 
coproducts. To have strong split coproducts, we have to show that the 
canonical maps K in 

(U«.-)eUieXj *■ X^A' x A) x C'E) ^-^ (Uiex,{(*.*) I * € *,* € Z(itS) },Aj x (A x C),E>) 

(U,eXl XitAjX A,E") ^ I 

is an isomorphism. But K is just the map ((i, x),z) *-¥ (i, (x, z)) which clearly 
has an inverse. Hence we have strong coproducts. 

In summa, we have proved the following theorem. 

Theorem 3.6.20. The functor V: UFam(Asm(p)) -» Asm(p)-*' is a split 
closed, comprehension category. Hence, we have a split model of dependent 

type theory. 
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3.6.3    Stable and Disjoint Coproducts 

By Theorem 3.5.3 we know that the category of assemblies constructed 
over a pretripos with disjunction has finite coproducts. In this subsection 
we prove that if the pretripos is a weak realizability tripos, then the finite 
coproducts are stable and disjoint. Stability and disjointness are important 
for the interpretation of logic by means of subobjects. We begin by recalling 

(e.g., from [CLW93]) the definition of stability and disjointness. 

Definition 3.6.21. In a category with finite coproducts and pullbacks along 

injections, coproducts are said to be disjoint if for any finite sum Y = 

l'i -\ h Yn, the pullback K; Xy Yj is isomorphic to 0 (the initial object, 
i.e., the empty sum) whenever i ^ j, and all injections are monic: 

0 2 If  XyYj *Yj 

Yi^- ■+Y. 

Definition 3.6.22. In a category with finite sums and pullbacks along their 
injections, a coproduct diagram 

X ■Y ■*■ X + Y + 

is said to be universal or stable if pulling it back along any morphism into 
X + Y gives a coproduct diagram. 

Theorem 3.6.23. Let C be a WCPC-category with weak finite coproducts 
UFam(C) 

and let       \p      be the induced, realizability pretripos with disjunction. Then 
Set 

Asm(p) has stable and disjoint finite coproducts. 

Proof. By Theorem 3.5.3 it suffices to show that the coproducts are stable 
and disjoint. Disjointness follows from disjointness of coproducts in Set 
and the explicit description of pullbacks and coproducts in Asm(p). For 
stability we reason as follows. Consider the following diagram in Asm(p). 

P + Q- 
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where P is the pullback of (X, A, Ex) along / and Q is the pullback of 
(Y,B,EY) along / and P + Q is the coproduct of P and Q.   We are to 
show that P *-(Z,C,Ez)* Q is a coproduct diagram. We do this by 
showing that (Z,C, Ez) is isomorphic to P + Q. By the universal property 
of P + Q, there is a unique morphism from P + Q to (Z, C, Ez) such that 
the two triangles on the left in the diagram above commute. Consider the 
function g from Z to the underlying set of P + Q defined by 

{Kp(z, x)    if f(z) = K(X) for some x £ X 

KQ (z, y)    if f(z) = n'(y) for some y € Y. 

(This is a well-defined function since K and K' are monic.) Clearly, if g is a 
morphism from (Z, C, Ez) to P + Q in Asm(p) it establishes the required 
isomorphism since g is the unique map in Set such that gn = up and 
gn = KQ. We now proceed to show that g is a well-defined morphism, that 

is, that 

z:Z\Ez(z)\-EP+Q(g(z)) (3.5) 

is valid in the logic of p, where -Ep+Q is the underlying existence predicate 
of P + Q. (Note that we here follow our convention of leaving out the object 
of realizers when it is clear from context, e.g. writing Ez{z) for (C, Ez){z).) 
Using that / is a morphism we have that 

z:Z\ Ez{z) h   (3a:: X. f{z) = K(X) A Ex(x))V 
(3y:Y. f\z) = K'(y) A Ey(y)), 

from which the required follows, using that equality is very strong in p (see 

Page 54). D 

The following corollaries are then obtained using 3.4.10 and 3.4.14. 

Corollary 3.6.24. Let (A, •) be a partial combinatory algebra and let C(A) 
UFam(C(^)) 

be the WCPC-category induced by (A, ■). Let l?        be the realizability 
Set 

pretripos over <C(A).  Then Asm(p) has stable and disjoint finite coproducts. 

UFam(ALat) 
Corollary 3.6.25. Let \p be'the realizability pretripos over ALat. 

Set 
Then Asm(p) has stable and disjoint finite coproducts. 
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3.7    Modest Sets over Realizability Pretriposes 

In this section we show how we can also generalize the construction of the 
category of modest sets over a PCA(see, e.g., [Hyl82, LM91, Lon94]) and 
over algebraic lattices [BBS98]. Given the work we have done with assem- 
blies, the development in this section is quite straightforward and standard 
and we shall leave the verification of many details to the interested reader. 

Convention 3.7.1. For the remainder of this section, let C be a WCPC- 
UFam(C) 

category and let       \p      be the realizability pretripos over C.  As before, 
Set 

we sometimes write Asm(C) for Asm(p). 

Definition 3.7.2. An object (X, A, E) e Asm(p) is called modest if 

Vx,x' eX. (E(x)nE(x1)^ x = x') 

Definition 3.7.3. The full subcategory of Asm(p) formed by the modest 
sets is referred to as the category of modest sets over the realizability 

UFam(Q 
pretripos       \j>      and is denoted Mod(p) (or Mod(C)). 

Set 

Remark 3.7.4. We defined a category of assemblies over any regular fibra- 
tion over Set, but the definition of modest sets is only given for realizability 
pretriposes. It may be possible to suitably generalize the definition of mod- 
est sets to work over more general fibrations but the resulting definition 
would probably not be as concrete as the above (where we explicitly use 
intersection of sets of realizers) and we have thus decided to stick with this 
definition since it also covers all our applications. 

Example 3.7.5. Let A be a PCA and let C(A) be the induced WCPC- 
category (see Definition 3.1.17).   Then the category of modest sets over 

UFam(C(4)) 
the realizability pretripos \p is equivalent to the usual category 

Set 
Mod (.4) of modest sets over A as defined, e.g., in [Lon94]. 

UFam(ALat) 
Example 3.7.6. Let \p        be the realizability pretripos over ALat. 

Set 
Then Mod(p) is equivalent to the category of modest sets over ALat as 
defined in [BBS98]. This category is equivalent to the category Equ of 
equilogical spaces mentioned in the introduction to this chapter; see [BBS98]. 
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Just as for modest sets over PCAs there is an equivalent definition in 
terms of partial equivalence relations: 

Definition 3.7.7. The category PER(C) of partial equivalence rela- 
tions over C is the category with 

objects pairs (.4, R) with A £ C and R a partial equivalence rela- 
tion on U(A); 

morphisms    (A, R) —>• (B, S) are equivalence classes of morphisms 

f:A-+B 

that, satisfy 

Va,a' G U{A). aRa' =>    U(f)(a) I and U{f)(a') 1 
and U(f)(a)SU(f)(a'); 

with two such / and /' equivalent iff 

Va e U(A). aRa =>  U{f)(a) S U(f'){a). 

By analogy with the situation over PCAs we have the following propo- 
sition (we omit the easy proof). 

Proposition 3.7.8.  The category PER(C) is equivalent to M.od(p). 

Let I denote the inclusion functor Mod(p) —>■ Asm(p). 

Proposition 3.7.9. Mod(p) is a regular category and the inclusion I is 
exact. 

Proof. Finite limits and image factorizations are calculated as in Asm(p); 
one just need to verify that the resulting existence predicates are all modest, 
but that is straightforward. D 

Define the functor R: Asm(p) —> Mod(p) as follows. On objects (X, A, E), 
let R(X, A, E) = (X/~, A, £"), where ~ is the transitive closure of -—- in X 
with x — x' iff E(x)nE(x') ^ 0 and E'([x\) = \Jx>e[x] E(x')- 0n morphisms 
/, let R(f) be the mapping [x] >-)■ [f(x)]. 

Proposition 3.7.10. There is an adjunction R -\ I and R preserves prod- 
ucts. Thus Mod(p) is an exponential ideal of Asm(p). 

Proof. Simple verification. D 
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In fact, Mod(p) is also locally cartesian closed and we can define the cat- 
egory UFam(Mod(p)) of uniform modest sets in much the same way as 
UFam(Asm(p)) is defined (the definition has been written out for p the 
realizability pretripos over ALat in [BBS98]). Then we again get that the 
projection UFam(Mod(p)) -» Mod(p) is a split fibration which is equiva- 
lent as a fibration to the codomain fibration over Mod(p), via a functor 

V: UFam(Mod(p)) -> Mod(p)"\ 

One can also show that this functor is a split closed comprehension category. 
Thus we also get a split model of dependent type theory over Mod(p). 

3.8    Relation to Regular and Exact Completions 

As mentioned in the introduction to this chapter, in our work with Carboni, 
Rosolini and Scott [BCRS98] we have developed a complementary approach 
to a general notion of realizability for type theory, based on the theory of 
exact categories and exact completions. The approach in [BCRS98], see 
also [CR99], is a generalization of "the exact-completion approach to realiz- 
ability toposes" as found in [RR90], see also [Car95], whereas the approach 
in this chapter is a generalization of "the tripos-theoretic approach to real- 
izability toposes" as found in [HJP80, Pit81]. 

In this section we briefly relate the approach in [BCRS98] to the ap- 
proach in this chapter. For this section only, we assume that the reader has 
some knowledge of regular and exact completions (the material included 
in [BCRS98] suffices; for an in-depth treatment see [Car95, CV98]). 

Convention 3.8.1. For the remainder of this section, let C be a WCPC- 
category and let U: C -»• Ptl be a WCPC-functor. 

Recall the following definition from [CR99]. (It is slightly different from 
a related definition in [BCRS98], which is geared more towards situations 
where all realizers are total.) 

Definition 3.8.2. The category T{€) is the category with 

objects triples (X, A, a), where X £  Set, A G C,  and a: X -> 
U(A) in Set; 

morphisms    /: (X,A,a) -+ {Y,B,r) are functions /: X -* Y in Set 
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such that there exists a g: A —>• B in C such that 

/ 

U(A) 
U(g) 

+ Y 

U(B) 

commutes in Ptl (note that only U(g) may be partial). 

Remark 3.8.3. Let A be a PCA and let C(A) be the WCPC-category 
induced by A. Then !F(C(A)) is equivalent to the category of partitioned 
assemblies over A, as denned in [CFS88, RR90]. 

The following proposition is straightforward to show (very similar results 
can be found in [CR99]), and we omit the proof. 

Proposition 3.8.4. Let C be a WCPC-category and suppose U: C -¥ Ptl 
is a WCPC-functor.  Then T(C) has all finite limits. 

We briefly recall the explicit description of the regular completion of 
a lex category [Car95], which we shall use below. For further information 
about the regular completion of a lex category, see [Car95]. 

Let C be a lex category. Then the regular completion of C is the 
category (C)reg/iex with 

objects morphisms 

U 

V 

ofC; 

morphisms 

X         u 
W 

i 
' Y 
Y V 

are equivalence classes of morphisms /: X —> U such that 
glf0 — glfi, where /o, j\ are the structural maps of the 
kernel of /, with two such arrows / and /' equivalent if 
gl = gm. 
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The following is an easy generalization of [Car95, Lemma 6.1] (which deals 
with the special case where the WCPC-category is the one induced by the 
Kleene PCA). 

Proposition 3.8.5.  The category Asm(C) is equivalent to (T(C) reg/lex • 

Proof. The proof is essentially as in [Car95, Lemma 6.1].7 Define the functor 
G: (^"(C) )reg/iex -> Asm(C) as follows. An object 

(X,A,a) 

f 

(Y,B,T) 

in (T(C) )reg/iex is mapped to the object (Im(/), E), where 

E{y) = { a G U{A) \ 3x e X. f(x) = yA a(x) = a }. 

A morphism 

(X,A,(T) (X>,A!,a>) 

/ a 

(Y,B,T) (Y',B',T') 

is mapped by G to the function y i-> g{l(x)), where x € /_1(2/)- BY tne 

fact that [/] is a morphism in (T(C) )reg/iex! this function is well-defined, in 
particular independent of the choice of representative for [/]. Now one can 
verify that G indeed is a functor and that it is full,8 faithful and essentially 
surjective as in [Car95, Proof of Lemma 6.1]. □ 

Corollary 3.8.6.  There is an equivalence of categories (Asm(C) )ex/reg a 

(•^(C) ) ex/lex- 

Proof By Proposition 3.8.5 using that {T{C) )ex/lex ~ ((^(Q )reg/lex)ex/reg. 

D 

Carboni [Car95] uses another, but equivalent, formulation of the category of assemblies 
than we do. The proof here just combines Carboni's proof with the equivalence between 
the two equivalent definitions of the category of assemblies. 

To show that G is full, one uses choice in Set. 
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In [CR99, Page 13] it is shown that ^(C) is weakly locally cartesian closed 
(see loc. tit. for a precise definition) when C is weakly cartesian closed. 
The same construction can be used to show that also T(C) is weakly lo- 
cally cartesian closed when C is a WCPC-category. We can then conclude 
using [CR99] that (f(C) )ex/lex is locally cartesian closed. Thus, by Propo- 
sition 3.8.5 and by using properties of the exact completion of a regular 
category, we have that Asm(C) is a full subcategory of (^"(C) )ex/lex- Fur- 
thermore, one can show that Asm(C) is equivalent to the full subcategory 

of (^"(C) )ex/lex on those pseudo-equivalence relations X\       I XQ for which 

(rur2) is monic. It follows by [BCRS98, Theorem 4.3] that Asm(C) is a 
reflective subcategory with exponentials computed as in (T(C) )ex/lex- By 
Proposition 3.7.10 we can then conclude that Mod(C) is also a reflective 

subcategory of (J'(C) )ex/ieX 
W1^ exponentials in Mod(C) computed as in 

(HC) )ex/lex- 

3.9    Other Related Work 

In a talk in Cambridge, August 1995, Samson Abramsky [Abr95] made some 
observations related to the ones I have made in this chapter.9 Abramsky's 
and my work were done independently and I did not hear about Abramsky's 
work until I had finished the work reported here. Abramsky showed that if 
a category C is cartesian closed, then the category of assemblies and modest 
sets over it are both locally cartesian closed. He further showed that if C 
has weak coproducts then the category of assemblies and modest sets have 
coproducts. Abramsky proceeded by analogy to realizability over PCA's, 
defining the categories of assemblies and modest sets directly without using 
a notion of pretripos. Abramsky's result is a special case of ours where the 
underlying WCPC-category C is in fact cartesian closed and the functor 
U: C —»• Ptl is the global sections functor followed by the inclusion of Set 
into Ptl. 

In [Lam94] Lambek describes a generalized construction of a category 
of PER's sending a category C to a category CR, whose objects are pairs 

(a, A) where A is an object of C and a is a family (ac)ceC of PER's ac on 
Homc(C, A) and whose morphisms (a, A) —> (ß,B) are equivalence classes 
of morphisms /: A —> B in C which (for all C G C)  respect the PER's; 

91 thank Jaap van Oosten for bringing this fact to my attention and for providing 
me with a copy of his notes from the talk. Also thanks to Samson Abramsky, who via 
email communicated the contents of his talk to me and provided me with the reference to 
Lambek's work described in the following. 
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two such /'s are equivalent iff they induce the same map on the quotients. 
Thus compared to the definition of PER(C), the difference is that in CR, 
the PER's have arbitrary stages of definition (they are not just PER's on 
global elements). Lambek observes that if C is cartesian closed, then CR is 
so as well, and if C has weak products (coproducts), then CR has products 
(coproducts); he does not consider weak closure and he does not consider 
categories of partial maps. 

Independently of the work reported here, John Longley has recently 
suggested another general framework encompassing both typed and untyped 
realizability [Lon99]. Longley defines a type world to be any non-empty 
set T of (names for) types equipped with binary operations X and ->■ for 
forming product and arrow types. (There is no requirement that T be freely 
generated in any sense.) Longley then defines a partial combinatory type 
structure (or PCTS) over a type world T to a family of non-empty sets 

{At\teT} 

together with partial "application" functions 

■t,u ■ At^u x At ->• Au 

such that, for all types t, u, and v, there exist elements 

k*,« G At-tu-tt 

&t,u,v € -A(t_).u-M/)-»(.t-»-u)-»-(;f-+i>) 

tstf,« € Atxu-^t 
sndt,« € Atxu^-u 

satisfying the following, for all appropriately types a, b, and c (we have left 
out the application operations) 

kab = a 

sab I 

sabc > (ac) (be) 

fst(pairafr) = a 

snd(pairaö) = 6, 

where x > y means that if x is defined then y is defined and x = y. 
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For any such PCTS A, Longley then defines a category of assemblies and 
shows that it is regular and locally cartesian closed. 

I will leave a detailed analysis of the relationship between Longley's 
notion of PCTS and my notion of WCPC-category and the induced notions 
of categories of assemblies for future work. However, I conjecture that given 
a PCTS we may define a category C with objects At for t in the type world 
and with morphisms partial PCTS-definable functions. There is then an 
inclusion functor U: C —> Ptl, and the conjecture is that Split (C,U) is a 
WCPC-category D satisfying that the category Asm(D) of assemblies over 
D is equivalent to Longley's category of assemblies over the given PCTS. 

Peter Lietz and Thomas Streicher [Lie] have, in the context of Longley's 
PCTS's, shown some results closely related to our Theorems 3.4.15 and 
3.4.19 characterizing when the tripos-to-topos construction applied to the 
realizability tripos over a WCPC-category yields a topos. In particular, 
Lietz and Streicher show that a PCTS has a universal type iff it gives rise to 
a topos and iff it is equivalent to a partial combinatory algebra (in a suitable 
sense). 

3.10    Future Work 

There are many interesting questions for future work. One of the most inter- 
esting is "what is a suitable notion of morphism between WCPC-categories 
C and D ?" Such a morphism should induce morphisms between the in- 
duced realizability pretriposes over C and D (and then functors between the 
induced categories of assemblies over C and D). The right notion should 
include Longley's notion of applicative transformation between partial com- 
binatory algebras [Lon94]. We believe that a good notion of morphism 
from C to D would be a profunctor from C to D, possibly satisfying some 
extra conditions. The result should be a (bi)category of WCPC-categories, 
generalizing Longley's category of partial combinatory algebras and applica- 
tive transformations [Lon94]. Another interesting question is what universal 
property C(A) has ? 



Chapter 4 

A General Notion of 
Realizability for Logic 

In the previous chapter we saw how to obtain a model of an expressive type 
theory, based on our general notion of realizability. In this chapter we show 
that we can also obtain an expressive predicate logic to reason about the 
types and terms in the type theory. 

We shall restrict attention to realizability over a WCPC-category C with 
weak finite coproducts. Recall from the previous Chapter 3 that the induced 

UFam(C) 
realizability pretripos       J,       then has disjunction and that the category 

Set 
of assemblies Asm(C) (and also the category of modest sets Mod(C)) then 
is regular, locally cartesian closed, and has stable and disjoint finite co- 
products. It follows easily (using [Jac99, Lemma 4.5.2]) that Asm(C) is 
a logos1 and hence, by [Jac99, Theorem 4.5.5] that the subobject fibration 
Sub(Asm(C)) 

4, is a first-order fibration.2 This means that we have a model of 
Asm(C) 

predicate logic over the simple type theory of Asm(C). In this chapter we 
show how to get a model of predicate logic over the dependent type theory 
of Asm(C) (described in Section 3.6.2) so that we can have entailments of 

'Recall, e.g. from [Jac99, Section 4.5], that a logos is a regular category with a strict 
initial object 0 (i.e., every morphism X —> 0 is an isomorphism), with stable binary joins 
V in each subobject poset Sub(7) and with right adjoints \\u f°r eacn pullback functor 
u*: Sub(J)->Sub(/). 

2 A first-order fibration is a regular fibration (see Section 3.2.2) which is fibred 
bicartesian closed and which has simple products \[II n, see [Jac99, Section 4.2] for more 
details. 

89 
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the form 

Xi: CTI, ... , xn: crn | ^1,... , <pm •" V>, 

where xx: o^, ... , xn: on is a dependent type context and <pi,... ,ipm is an 
ordinary proposition context. Moreover, we show how to get a model of full 
subset types and of quotient types. Subset types allow formation of types 
using predicates as in 

T,x: a h tp: Prop 

r h { x: a | Lp } : Type 

Quotient types allow formation of types using relations as in 

r,.r: a,x': ah R(x,x'): Prop 

TY-a/R: Type 

where, intuitively, a/R is the type of equivalence classes of a generated by 
the least equivalence relation containing R. 

In Section 4.1 we show how to get a model of dependent predicate logic. 
In Section 4.2 we describe dependent subset types and in Section 4.3 we 
cover dependent quotient types. In each of these three sections, we first 
recall the abstract categorical definition of a model (for dependent predicate 
logic, etc.) from [Jac99] and then prove that our particular model satisfies 
the abstract definition. We only describe the models for Asm(C); similar 
results, with the same definitions, hold for Mod(C). In Section 4.4 we 
present an equivalent formulation of the subobject fibration which can be 
used to give a very simple description of the logical operations. It is used in 
Appendix A, where we present a very concrete description of the calculus of 
dependent predicate logic and its interpretation in Mod(ALat). 

Convention 4.0.1. For the remainder of this chapter let C be a WCPC- 
category with weak finite coproducts and let U: C -> Ptl be a morphism 
of WCPC-categories.   Write Asm(C) for the category of assemblies over 

UFam(C) 
the realizability pretripos        \p      with disjunction induced by C and [/. 

Set 
As in the previous chapter, we write (X, A, E) for an object (X, (A, E)) in 
Asm(C), i.e., X is a set, A is an object of C and E is a function X -> 
P(UA), such that E(x) is non-empty, for all x e X. 

Before embarking on the dependent predicate logic, let us mention the 
following fact. 
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R.egSub(Asm(C)) 
Fact 4.0.2.  The regular subobject fibration I is a split higher- 

Asm(C) 

order fibration.3 Its logic is classical. 

This fact is a straightforward generalization of [Jac99, Proposition 5.3.9]; 
it is based on the observation that the regular subobjects of an object 
(X, A, E) G Asm(C) are in one-to-one correspondence with the powerset 
of X (this follows easily from the description of equalizers in Asm(C), see 
the proof of Proposition 3.3.3; see also [Jac99, Lemma 5.3.8]). The split 
generic object is V(2) (with V defined in 3.3.4) — this object is not modest 
and thus the regular subobject fibration on Mod(C) only forms a first- 
order fibration. The logic is classical because predicates on (X,A,E) are 
modelled by subsets of A' with the connectives interpreted by the boolean 
algebra operations on PX. 

In the dependent predicate logic described in the following, we model 
predicates by arbitrary subobjects and not regular subobjects, for the usual 
reason that the intuitionistic logic is the most expressive (allows to reason 
about a wider collection of subobjects). Indeed, the regular subobjects are 
then exactly the double-negation closed subobjects. 

4.1    Dependent Predicate Logic 

We recall the definition of a DPL-structure from [Jac99, Section 11.2]. 

Definition 4.1.1. Consider the following diagram 

v 

D 
where \.g  is a preorder fibration and V:E-t B~* is a comprehension cate- 

B 
gory. Suppose this structure satisfies the following conditions 

1. V is a closed comprehension category (for type formers ]], TJ, and 1); 

E 
3A split higher-order fibration \P  is a split first-order fibration with B cartesian 

m 
closed and with a split generic object, where a split generic object of p is an object 
fi £ B together with a collection of isomorphisms 6i: B(7, Q) —> Obj Ej natural in /; that 
is 8j(u o v) = v*(9i(u)) for v. J -¥ I. See [Jac99, Chapter 5] for details. 
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2. q is a fibred bicartesian closed preorder fibration (for T, A, J_, V, D); 

3. q has T^-products V, P-coproducts 3, and P-equality Eq. 

We then say that the structure is a DPL-structure. 

Remark 4.1.2. Our definition differs from [Jac99, Definition 11.2.1] in that 
we have left out the requirement of a generic object (since we shall not be 
dealing with higher-order logic in this chapter). 

Theorem 4.1.3.  The structure 

Sub(Asm(C)) UFam(Asm(C))^Asm(C)^ 

Asm(C) 

forms a split DPL-structure. 

Proof. Condition 1 in the definition of DPL-structure is met by Theo- 
rem 3.6.20; condition 2 holds by the remarks in the introduction to this chap- 
ter; and condition 3 holds since Asm(C) is regular (by Proposition 3.3.3) 
and locally cartesian closed (by Theorem 3.5.1). Regularity entails that 
the subobject fibration has coproducts along all maps in the base cate- 
gory [Jac99, Theorem 4.4.4]; this gives the required 7^-coproducts and also 
"P-equality Eq. Local cartesian closure entails that the subobject fibration 
has products along all maps in the base category [Jac99, Theorem 4.5.5]; in 
particular we have the required P-products. □ 

4.2    Dependent Subset Types 

We recall the definition of dependent subset types from [Jac99, Section 11.2]. 
Consider a DPL-structure 

P   , 
cod 
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as defined in 4.1.1. Then we can form the diagram 

■ Famp ( 

Famp(q) E { —}=dom oV 

where Famp(D) is defined by change-of-base and Fa,m-p(q) is defined to be 
the composite Famp(D>) —> E —>• B. The fibred terminal object functor 
T: E —> Fam-p(D) is induced by the terminal object functor T: B -> D to q, 
namely as X >-»■ (X, T({A'})). In this situation, we say the DPL-structure 
has (dependent) subset types if there is a, fibred right adjoint {—} to T 
in the situation: 

(Note that we overload the notation and use {—} for two distinct functors 
Fam-p(D) —>• E and E -» B.)   Such an adjoint induces a (faithful) fibred 
subset projection functor Fam-p(D) ->■ V(E) over E, where V(E)C ^E-*' is 
the full subcategory of vertical maps (with respect to p). That is, objects of 
V(E) are objects of E-^ (arrows of E) which by p are mapped to the identity 
in B. The fibred subset projection functor is given as follows. For an object 
(X, <f) € Fairrp, the counit €(A» 

: T{(X, tp)} -¥ (X, <p) induces a morphism 

»r(e(A»): {(^.v)} -> x in E (where ?r is the functor Fam^(D) -> E). 
The assignment (X, <p) \-t n(e(x,<p)) extends to a functor Fam-p(D) —>• V(E) 
over E, the fibred subset projection functor. We then say that we have 
full dependent subset types if the fibred subset projection functor is full. 
See [Jac99, Sections 4.6 and 11.2] for more details. See Page 258 for the 

-logical rule for full subset types. 

We can now prove that we indeed have full dependent subset types. 
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Theorem 4.2.1.  The DPL-structure 

Sub (Asm(C)) UFam(Asm(C)) -£-*- Asm(C)" 

cod 

Asm(C) 

has full dependent subset types. 

Proof. The proof is essentially as the proof for toposes in [Jac99, Proposi- 
tion 11.2.4], combined with the proof of Proposition 3.6.16. 

Consider the following diagram 

Fa.m-p(q)=pOTr' 

•Famp(Sub(Asm(C))) 

UFam(Asm(C)) 

p=codo V 

V. 

{-}=domo? 

-^Sub(Asm(C)) 

Asm(C) 

■Asm(C). 

We are to show that functor T has a fibred right adjoint {-} as in the 
situation 

{-} 

UFam(Asm(C)) -Famp(Sub(Asm(C))) 

Asm(C), 

where, for an object X = (7, A, (Xh Ei)ieXl) with I = (A'/, Ah Ei), T(X) = 

ix^{X})- Define the functor {-} as follows. An object (X, K>~^{X}) 
with X as before and with K = (XK, AK, EK) is mapped to 

(I,AK,(Zt,Et)ieXl), 

where Zt =f { x G XK \ n(ip(x)) = i} and E[{x) =f EK(x). On a morphism 

from (X, K^+{X}) to (J, L^-+{y}) we let 

{((«> (/t)t-ex7), (9i,92))} = (u, (9i)iei) 



4.2 Dependent Subset Types 95 

(which is well-defined because, by definition of Fam-p(Sub(Asm(C))), we 

have that (91,92)'- V3 —* V' in Asm(C)^.) A tedious verification, which we 
omit here, then shows that {-} is a fibred functor, i.e., that it preserves 

cartesian morphisms (one uses that a morphism in  ((u, (,/v);eXj), (du S2)) 
Sub(Asm(Q) 

is cartesian in Famp(Sub(Asm(C))) iff (91,92) is cartesian in I 
Asm(C) 

over {(u, (/Oie.Yj)}-) 
In the fibre over /, the adjoint equivalence 

T(A') = (X, T{x}) -U. (y, ip: K -» {?}) in Fam7,(Sub(Asm(C)))7 

X—+{(y,<p:K^{y})} in UFam(Asm(C))/ 
h 

is given as follows. Suppose that 

X = (I, A, (Xt, Ei)ieXl)    and    y = (I, B, (Yt, £/),-<=*,). 

For / = [(id, (/i)iG-Y7)i (§1,92)), where necessarily (by definition of category 
Fam^(Sub(Asm(C)))) 

92 = {(id, (ft)iexT)} = (i, x) i-> (i, fi(x)), 

the adjoint transpose / is (id, (x (->• gx(i, x))iexj)- For h = (id,(hi)iexj), 
the adjoint transpose h is 

[(id, (x t-> w'((p(hi(x))))iexj), ((x,i) H- (hi(x)), (x,i) H> ip(h(x)) 

We omit the straightforward verification that the adjoint transposes are 
well-defined morphisms. 

The unit rj of the adjunction is given by 

f\x ■ {T(X)} ->X= (id, (x H-> (i, x))ieXl) 

(note that {T(X)} = (I,Ai X A, ({«'} X Xi,E-)i€xT), when X is as given 
above.) 

The counit e of the adjunction is given by 

e : T{(X, K-^*X)} -> (X, K-^-X) 

= {(id, (x I-»- 7r'(p(x)))ieXl), ((»» H> x, (i,x) H» (i,ir'((p(x))))j. 

The remaining details of the verification that this establishes a fibred ad- 
junction are left to the reader. 
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To show that we have full dependent subset types, note that the in- 

duced fibred subset projection functor maps (X, K V >X) to the object 

{{X, K—^-X)} -+ X in V(UFam(Asm(C))) which is the morphism 

{id, {x ^ ir'{<p(x)))i€Xl) 

in UFam(Asm(C)).   Unravelling the definitions, one easily sees that the 
functor is full, as required. This completes the proof of the theorem. D 

4.3    Dependent Quotient Types 

We recall the definition of dependent quotient types from Section 11.2 in 
[Jac99]. Consider a DPL-structure 

E- 

as defined in 4.1.1. Write {{-}} for codo<5, where 8{X) is the diagonal map 
used in Definition 3.6.2 to define equality. Thus {{-}} maps an object X eE 
to 

{{X}}={(VX)*(X)}—*{X} 

vx 

{X} vx ■pX. 

Type theoretically, {{-}} maps a dependent type T h a: Type to the context 
(T,a;: a,x': a) that extends V with two variables of type a. Now consider 
the category of relations, obtained by change-of-base as in 

RFamp(D) 

RFamp(g) 

Eq 

E- 
{{-}}=codo5 
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where RFam-p(q) is the composite RFamp(D>) -» E ->• B. The fibred equality 
object functor Eq: E -> RFamp (D) is induced by the equality Eq in q with 
respect to V, namely as X (->■ (A',Eq(T{.Y})). We say that the DPL- 
structure has dependent quotient types if there is a fibred left adjoint Q 

to Eq in the situation: 

RFamp(D) 

Such an adjoint induces a "canonical quotient map" functor RFam-p(D) —> 
V(E)  commuting with the domain functor dom: V(E)   -)•  E,  where as 
in the previous section  V(E)C >E^  is the full subcategory of vertical 
maps (with respect to p). The canonical quotient map functor is given 

as follows. For an object (X, R) G RFamp(D>), the unit V(X,R)'- (X, R) ->■ 
EqQ(X,R) induces a morphism TT(T](X,R))

:
 
X
 ~> Q{X,R) (where 7r is the 

functor RFamp(D) -^ E). The assignment (X, R) H» n(r)(x,R)) extends to a 
functor RFam-p(D) -> V(E) over E, the canonical quotient functor, which 
commutes with the domain functor dom: V(E) -> E. We shall say that we 
have full or effective dependent quotient types if this functor is full and 
faithful, when restricted to equivalence relations. See [Jac99, Sections 4.8 
and 11.2] for more details. 

We can now prove that we have quotient types. 

Theorem 4.3.1.  The DPL-structure 

Sub(Asm(C)) UFam(Asm(C))-^Asm( 

has quotient types. 

Proof. Consider the following diagram, in which RFam is defined by change- 
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of-base, 

RFam 

RFam(gr) 

Eq 

UFam(Asm(C); 

Asm(C) 

{{-}}=codo<5 

-^Sub(Asm(C)) 

•Asm(C) 

and where RFam((?) is the composite RFam ->• UFam( Asm(C)) -^ Asm(C). 
For an object X = (I, A,{Xt, E^^Xj) in UFam(Asm(C)), where / = 
(A'/, Aj, Ei), functor {{-}} acts as follows: 

{{*» = ( U(I>)GU.„ x, *u (Aj x A) x A, E), 

where £((?:, x), x') = Ei{i) A Ei{x) A Ei{x'). The action of the functor on 
morphisms is the obvious one. 

The fibred equality functor Eq is defined as in the definition of dependent 
quotient types. Let us work out explicitly what the action of Eq is on objects. 

Eq(A') = (X, Eq(T{A'})) by definition of Eq 

= (X, Eq( {X}^U{X])) by definition of T 

= (X,U8(X)(W>^+{X}))    by definition of Eq, see Thm. 4.1.3 

= {X, lm{{X}J^l{{X}}))       by [Jac99, Theorem 4.4.4] 

- (x, ({ ((i,x),x') 6 U{ix)e]l      x.Xi | x = X'},A!XA,E] 

by proof of Prop. 3.3.3, 

where E((i, x),x') = E(i, x) = E^i) A Ei(x). 
We are to show that Eq has a fibred left adjoint Q, as in 

RFam ■*■ 
Eq 

RFam(g)X\^ ^-^ V 

Asm(C). 

UFam(Asm(C)) 
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For each I G Asm(C), we define functor Q/: RFam/ ->• UFam(Asm(C))/ 

among the fibres over /; we shall omit the straightforward verification that 
this defines a fibred functor Q. For (X, R) G RFam/, with X as above and 

with RA-{{X}} and R = (XR, AR, ER), define 

QI(X,R) = (I,A,(Xi/^l,E
l

i)ieXl), 

where RS; is the least equivalence relation on X{ (this least equivalence rela- 

tion exists since Xi G Set) containing ~; with 

x ~j- x' <=>■  there exists an r G XR such that m(r) = ((?', a;), a-') 

and where E-([x]) = Lb'eH ^'(a'')- On a morphism 

((trf,(/,-),-e^), (5i,52)): (*,#) -► (3>,5) 

in RFam/, with y = (I, B, (1;, E")ieXl) (and, necessarily, g2 equal to 

((?:, a), x') i-> ((i, /,-(a;)), /,•(«'))) we define Qi to give 

In the fibre over /, the adjoint correspondence 

Qi{X,R)-L.y 
(X,R)-irEq(y) 

is given as follows. If / = (id, (fi)ieXl), let 

/ = ((id, (x ^ fi[x])ieXl), (91,92)), 

where g2((i,x),x') = ((», /,•[«]), /,■[«']) and #i(r) = <72(m(r)). If 

fc = ((«*, (Äi)ieXj). (91,92)), 

let 

A = (id, ([a:] (->• hi(x))ieXl) 

(this is easily seen to be well-defined, in particular independent of the choice 
of representative of [a;]). Using these definitions one can verify that Q is a 
fibred left adjoint to Eq, as required. 

The canonical quotient map X —>■ Q(X, R) is (id, (x H-> [x])ieXl). D 
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Remark 4.3.2. Our model does not support so-called full or effective quo- 
tients, that is, we cannot show that the following rule is sound 

T,x: o,x': a \- uR(x,x') is an equivalence relation" 
T\-M:a T \-M': a 

T\[M]R=a/R[M']RhR(M,M') 

The reason is that, when we form the quotient Q(X, R) (for R an equivalence 
relation) we forget about the realizers for r G XR (see the proof above), so 
from just knowing that two quotients are equal we cannot produce a realizer 
for the fact that representatives are related. 

Indeed, by Proposition 4.8.6 in [Jac99] we know that the subobject fi- 
bration of a category B only has full or effective quotients in case B is exact4 

— and Asm(C) is not exact.5 Had we instead of Asm(C) been working 
with (Asm(C) )ex/reg (see Section 3.8), then the above rule would have been 
available. We chose to stick with Asm(C) because it is a bit more con- 
crete and, moreover, the results obtained for Asm(C) also apply directly 
for Mod(C), allowing us to conclude that we get a model of type theory 
and logic in the category of equilogical spaces or, equivalently, Mod(ALat). 
See Appendix A for a concrete treatment. 

4.4    For a Concrete Description 

In this section we define a fibration over Asm(C) and show that it is equiva- 
Sub(Asm(Q) 

lent to the subobject fibration \. . The equivalent fibration is used 
Asm(Q 

in Appendix A to give a concrete description of the interpretation of the 
dependent predicate logic. 

We define a split indexed category *: Asm(C)op ->■ Cat. For an object 
I = (XJ,AI,EI), we let ty(I) be the poset obtained as the partial order 
reflection6 of the following preorder. The objects of the preorder are the ob- 

UFam(C) 
jects in the fibre UFam(C)X/ over A/ of the realizability pretripos       \p     . 

Set 

Recall that an exact category is a regular category in which each equivalence relation 
is effective, i.e., a kernel pair of its quotient. 

5We know that the category Asm(C) is in general not exact because the category of 
assemblies over a PCA is not exact (see, e.g., [Jac99, Exercise 6.2.5]). 

6The partial order reflection of a preorder < is the partial order obtained by iden- 
tifying objects A' and Y for which X < Y and Y < X. 
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The order of the preorder is defined as follows: (B, <p) < (C, ip) iff 

W:A>. E!(i) D (v(i) D Hi)) 

holds in the logic of the readability pretripos p. (We here follow the con- 
vention of leaving out the underlying object of realizers B for a predicate 
(B, ip) in the readability pretripos when it is clear from context.) Note 
that objects in VP(/) are equivalence classes of objects (B,p). We do not 
distinguish notationally between an object (B, <p) and its equivalence class. 

For a morphism u: I -> J in Asm(C), with I as above and J — 

(Xj, Aj, Ej), \P(w) is the functor 

(B,<p) *-> (B,<pou). 

This definition is clearly independent of the choice of representative of the 
equivalence class for (B,<p). Moreover, using the fact that u is a morphism 
in Asm(C) and thus that Vi: A'/. Ei(i) D Ej(u(i)) is valid in the logic of 
p, it is easy to see that \P(«) indeed is a functor. 

UFam(C) 
We write       .1       for the split fibration obtained by the Grothendieck 

Asm(C) 
construction applied to $. (Note that we use the same name UFam(C) for 

UFam(C) 
the total category of the fibration       J,       as for the total category of the 

Asm(C) 
UFam(C) 

readability pretripos       \p      even though the two categories are distinct. 
Set 

This should not cause any confusion since we shall never consider the total 
categories in isolation, but only as part of the two distinct fibrations.) 

Proposition 4.4.1.  There is a fibred equivalence 

Sub (Asm(C)) = >■ UFam(C) 

Asm(C) 

over Asm(C). 

Proof. We define fibred functors 

F: Sub(Asm(C)) -»■ UFam(C)    and    G: UFam(C) ->• Sub(Asm(C)) 

over Asm(C) and show that they form a fibred equivalence. 
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For I = {XI,AI,EI), define functor F7: Sub(Asm(C))7 -> UFam(C)7 

as follows. Let Fjfa: {Y,B,EY) — /) be (F,<//: A/ -4 P(r(F))) with 

,,.,      )0 ifi^Im^ 
(^ (z) = < 

[Fy(y)    if <p(y) = i for some y e Y. 

Note that <p' is a well-defined function since ip is monic. It is easy to see 
that Fi is independent of the choice of representative for the subobject 
represented by <p. Moreover, F/ is a functor since if y < ^ in Sub(7), i.e., if 
there is a. morphism m such that 

(Y,B,EY) ^ >{Z,C,EZ) 

commutes, then F/(y>) = (B,(p') < (C, tp') = F^ip) in UFam(C)7 because 
m is a morphism in Asm(C). 

With I as above, define functor Gi as follows. For a predicate (B, ip) e 
UFam(C)7, let Gi(B,<p) be the subobject 

({i6XI\<p(i)^(b},AIxB,E)^I 

represented by the identity function and where E(i) = F/(i) A <p(i). Gj is 
independent of the choice of representative for (F, <p) and is easily seen to 
be a functor. 

We show that GIoFI = id. Now G^Fj^: (Y, F, EY) ~ /)) equals 

({ i e Xi | ip(y) = i for some unique y }, Ai x F, E) 

with E(i) = Ej(i) A EY{y) for y the unique y such that <^(y) = i. We are to 
show that there is an isomorphism 

m 
({ i € A/ | y>(y) = i for some unique y }, A/ x F, F)    g3 (F, F, FF) 

in Asm(C). But if we let m(i) be the unique y such that <p(y) = i and let 
n{y) = ¥>(y)i then it is easy to see that m and n are well-defined morphisms 
and that the constitute the required isomorphism. 

We next show that F/ oGi = id. Now F/(G/(£, p)) = (A/ X F, <p') with 
¥>'(«') = F7(i) A <p(i). Clearly, (Aj X F, y>') < (F, ^), that is, Vz: A/. F/(i) D 



4.4 For a Concrete Description 103 

(¥>'(') D ¥>(»)) holds in the logic of p. For the other direction, we have that 

(B,<P)<(AIxB,ip') 

V?': Xj. Ei(i) D {<p{i) D <p'(i))    holds in the logic of p 

Vi: A'/. Ei(i) D ((p(i) D Ei(i) A <p(i))    holds in the logic of p. 

Hence {B,ip) and (Ai X B,if') represent the same object in UFam(C)7, as 
required. (Here we crucially use that the ordering in UFam(C)/ is defined 
not just as in the fibre over Xj in the readability pretripos, but also using 

Ei(i)-) 
It remains to show that the F/'s and the G'j's constitute fibred func- 

tors. Thus we are to show that, for any u: I ->■ J in Asm(C), for all 
<fi e Sub(Asm(C))j and all (5,V'j € UFam(C)j. 

F/(«*M) = uHFjfr))       and       G^u^B, ]>)) = u*(Gj(B, ^)), 

where we write u* for reindexing in the subobject fibration (i.e., pullback 
UFam(C) 

along u) and u" for reindexing along u in        J,        (*'-e-i composition with 
Asm(C) 

M). Both equalities are straightforward to show and we omit the details.    D 

Sub(Asm(Q) 
Since the logical structure of J, m defined categorically, it is pre- 

Asm(C) 

served by the equivalence of Proposition 4.4.1. Hence we conclude by The- 
orem 4.1.3 that 

UFam(C) UFam(Asm(C)) —^ Asm(C)^ 

cod 

Asm(C) 

forms a split DPL-structure. It is not hard to show (either directly or via 
the equivalence in Proposition 4.4.1 and Theorem 4.1.3) that 

1. The split fibred bicartesian closed structure (T, A, J_, V, and D) is 
given exactly by the corresponding structure of the readability pre- 
tripos. 

2. The split "P-products are explicitly given as follows. Let 

X = (I, A, (Xi, Ei)ieXl) € UFam(Asm(C))/. 
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Ö' 

Then {X} = (Ui€xj Xu Ai x A, E) with E(i, x) = E^i) A Ei(x). For 
projection TTX : {X} -> I, the right adjoint V,v (satisfying the Beck- 
Chevalley condition) 

UFam(C) 7 ~T*" UFam(C) x , 

is given by 

xeXi 

where [A —>■ 5] is the weak partial exponential of A and B. 

3. The split "P-coproducts are explicitly given as follows. Let /, X and 
xx be as in the previous item. Then the left adjoint 3.* (satisfying 
the Beck-Chevalley condition) 

UFam(C) x ^T^ UFam(C)/ , 

is given by 

3* (£,¥>: UieXjXi-* P(UB)) = (Ax B,i^  \J (Et(x) A <p(i,x))). 
x£Xi 

4. The split P-equality is given as follows. Let /, X and nx be as in the 
previous items. Then 

KW} = (U(l>)€llejfi Xi Xi, (Ar xA)xA, E')) 

with E' the obvious existence predicate. For the diagonal 

Sx : {X} -»• {nx{X}} = (i, x) ^ ((i, x),x) 

the left adjoint EqA, (satisfying the Beck-Chevalley condition) 

Eg,* 
UFam(C)A. ~T UEam(Q^mT , 
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is given by 

I 0 otherwise. 

We now show that we can get similar results for the modest sets. 

UFam(C) 
Definition 4.4.2. Define the split fibration       .J,       by change-of-base as 

Mod(C) 
in 

UFam(C) ——»- UFam(C) 

Mod(C) > Asm(C), 

where the functor across the bottom is the inclusion. (Note that the category 
UFam(C) on the left in the diagram is different from the UFam(C) on the 
right.) 

Proposition 4.4.3.  There is a fibred equivalence 

Sub (Mod (C)) = >UFam(C) 

Mod(C) 

over Mod(C). 

Proof. The proof is as the proof of Proposition 4.4.1; the only thing to note 
is that the domain of the subobject Gi(B,ip) (with Gi as in the proof of 
Proposition 4.4.1) indeed is a modest set. □ 

See Appendix A for a very concrete treatment of the interpretation of de- 
pendent predicate logic in Equ ~ Mod(ALat). 

4.5    Future Work 

What we have presented here is of course only the first stage, in the sense 
that we would like to have a wider collection of types, such as inductive, 
coinductive, and recursive types, and to be able to reason about those types 



106 A General Notion of Realizability for Logic 

in the predicate logic. To establish the existence of such a wider collection of 
types and accompanying sound reasoning principles, one would naturally as- 
sume more about the underlying WCPC-category of realizers. For instance, 
in the case of Equ ~ Mod(ALat) we have established, in joint work with 
Andrej Bauer, the existence of a wide collection of inductive and coinduc- 
tive types (W- and M-types). By employing general results of Hermida and 
Jacobs [HJ96] we have then shown that accompanying induction and coin- 
duction reasoning principles are sound. The details of this work will appear 
elsewhere. 
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Chapter 5 

Preliminaries on Tripos 
Theory 

In this chapter we recall some of the theory of triposes which we shall make 
use of in the following chapters. We also include a couple of new results 
on triposes, see Proposition 5.4.7 and Theorem 5.4.8. The notion of tripos 
was invented by Hyland, Johnstone and Pitts [HJP80] and the theory of 
triposes (over general base categories) was developed by Pitts in his Ph.D.- 
thesis [PitSl]; see also [Pit99] for a retrospective survey. There is also a useful 
recap of the basics of tripos theory in [Jac99]. Here we only recall parts of the 
theory, and refer to the referenced papers for an in-depth treatment and for 
more examples. Apart from the new results mentioned above, our treatment 
is standard and closely follows the published papers, except that we present 
triposes as fibrations instead of indexed categories (we have chosen to do so 
because elsewhere we mostly use fibrations). 

5.1    Definition and Examples 

5.1.1    Definition and Definability Results 

A tripos is a weak tripos with disjunction which has a (weak) generic object. 
Explicitly we define: 

Definition 5.1.1. Let B be a finitely complete category. A B-tripos, or a 
P 

tripos over B, is a fibration J,p over B which 
B 

1. is a fibred bicartesian closed preorder (for T, A, D, J_, and V); such 
a preorder is called a Heyting pre-algebra and we write hj for the 

109 
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preorder in the fibre Pj; 

2. has coproducts 3U H u* along all maps u: I -» J in the base E; 

3. has products u* H V„ along all maps u: I —V J in the base B; 

4. has a weak generic predicate: for each object I of B there is an 
object PI in B and an object G/ in P/XPJ, such that given any <p in 
P/xj, there is a map {tp}: J -> PI in B with (if// x {<^})* 6/Hr- <p in 
P/xJ- 

(Recall from Definition 2.2.14 that the Beck-Chevalley condition is re- 
quired to hold for V„ and 3U.) 

Just as all the second-order logical connectives and quantifiers can be 
defined from D and V alone, for a tripos, the operations T, A, _L, V, and 3 
can all be defined from D, V and €, see [HJP80, Theorem 1.4]. 

When the base category B is cartesian closed, item 4 in the definition 
can be replaced by: 

4'. There is a weak generic predicate a G PE over some object E, 
such that given any <p e P/, there is a map {</?}: / -> S in B with 
W}* +7 ¥>• 

Such a weak generic predicate is called a weak generic object in [Jac99, 
Definition 5.2.8, Page 326]. 

Readers familiar [Jac99] will note that the notion of a tripos over a 
cartesian closed category is closely related to the notion of a higher-order 
fibration from [Jac99]. Besides a minor technical difference regarding Beck- 
Chevalley (see the footnote on Page 48), the difference is that a tripos is 
only required to have a weak generic object whereas a higher-order fibration 
is required to have a true generic object, i.e., for a higher-order fibration the 
map {</?} is not only required exist but also to be unique.1 

A tripos (like a higher-order fibration) models intuitionistic higher-order 
logic without the following extensionality rule for entailment: 

r h P, Q : a -> Prop    r, x : a \ 9, Px \- Qx    Y,x : a \ Q,Qx h Px 
r | 6 h P =CT_>.pr0p Q 

For a higher-order fibration, if the fibres are not only preorders but in fact 
partial orders, then the fibration models the above extensionality rule (by a 

Thus the definition of tripos given in [Jac99, Definition 5.3.3] is in one sense more 
restrictive than the original definition given in [HJP80, Pit81]. 
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simple argument analogous the proof of Theorem 5.3.7 in [Jac99]), but for 
a tripos this is not so because of the lack of uniqueness associated with a 

weak generic object. 
p 

A tripos 4,P  in which each fibre P/ actually is B(/,E), for some object 
E 

S € B, and in which reindexing is given by composition, will be called 
canonically presented. We then write p = B(-, E). When B is cartesian 
closed a B-tripos can, without loss of generality, always be assumed to be 
canonically presented [HJP80, Pit81]. A canonically presented tripos over a 
topos is split iff it has fibre-wise quantification, see [Pit81]. For a canonically 
presented split £-tripos p (for £ a topos), with fibre over I the homset 
£(/,£), all the structure of the fibres can be defined in terms of operations 
on E. The subset Dp C £(1, E) consisting of those ip: 1 ->■ S with Ti r-x (p 
is called the designated truth values. Given the set of designated truth 
values, the preorder \-j in the fibre over I is given by 

(p hi v>   iff  \/i((f D 4>)e Dp, 

where I denotes the unique map I —)■ 1 in £. So a canonically presented 
split £-tripos p (for £ a topos) may be specified by 

1. an object E of £; 

2. maps Dp: E X E ->■ E (for implication) and f\  : (fi£)s ->• E in £ (for 
universal quantification); 

3. a subset Dp of £(1, E), 

satisfying various relations, see [HJP80, 1.4]. 

5.1.2 Topos Examples 

The following example is quite trivial, but useful, e.g., in connection with 
geometric morphisms as in Section 6.2. Let £ be a topos. Then the subobject 
fibration on £ is a tripos. It can be canonically presented as £(—, Of), where 
Q,£ is the subobject classifier of £. 

5.1.3 Localic Examples 

Let H be an internal locale in a topos £. The canonical £-tripos p on 
H is given by £(-, H), that is, the fibre over I is £(I, H) and reindexing is 
given by composition. The Heyting algebra structure on each fibre £(I,H) 
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is given by the internal structure on H; quantification is given fibre-wise 
by the internal inf map f\H: {Q£)H ->■ H; and there is just one designated 
truth value in Dp, namely the top element TH: 1 -» H. 

Remark 5.1.2. Note that the canonical tripos on a locale is not obtained 
by viewing the locale as a WCPC-category and then doing realizability over 
it. 

Remark 5.1.3. If $ ^ H is a filter on H, we can modify p by taking 

Dp = {h:l->H\h factors through $ >-» H } 

p 
and still get a tripos.  More generally, if >  is a B-tripos and $ C Px is a 

B 
filter, we can redefine the preorder on each fibre Pj by 

<py-i i>  iff \/i{(p D ip) e® 

and get a new B-tripos, which we call p$. 

5.1.4    Realizability Examples 

Let A be a partial combinatory algebra (PCA) in Set. (We here restrict 
attention to PCA's in Set, but one can also consider internal PCA's in other 

UFam(Tl) 
toposes.)  We define the standard realizability tripos        p      over A 

Set 
in the following way (we write out the structure explicitly to ease some 
calculations later on). 

As predicates on a set / one takes functions <p: I ->• PA, ordered by 

tp h7 $ <^=» 3a G A. Vt el. ae (y»(i) D V(*'))> 

where, recall, for sets X,Y C A, 

X DY = {feA\VaeX. f-ai and / • a e Y }. 

The bicartesian closed structure for these predicates on / is given by: 

Tf = Xi el. A 

±i = Xi ei. $ 

<pAi> = XieI. { {a, b)\a e ip(i) and b e ij){i) } 

<p v V = Xi e I. {(K, a) | a e <p(i)} u {(KI, b) | b e <p(i)} 

<pD ij) = Xi e I. (f(i) D 4>(i). 
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For u: I -¥ J in Set, and <p: I -> P(A), put 

Vu(f) = Aj e J.  f| ((«(a) =j j) D <p(i)) 
iei 

3u(<p) = \jeJ.  \J{<p(i)\u(i)=j}, 
iei 

where 

JA  if u(i) = j 
(M(O==JJ)=\0     else. 

(In case 7 = 0, the above intersection over I equals A.) It is easy to check 
that i' h V„(<yj) <$=>• (ipou) \- (f and 3„(^) h ip <^=^ </? h (V' o -u) and that 
Beck-Chevalley holds for these products and coproducts. In case u is epi, 
the definition of V„ may be simplified to 

V«M = Aj € J-  p|{ ¥>(*') | «(*') = j },        if « is epi. 
iei 

The assignment I >-)■ {PA)1 extends to a functor (i.e., a split indexed cate- 
gory) Setop —»■ Cat with reindexing by composition. The resulting fibration 

UFam(yt) 
(obtained by the Grothendieck construction) is the tripos        J,P      with 

Set 

generic predicate id: (PA) —> (-P^4) over PA 
UFam(i) 

In the standard realizability tripos       ^p     over A, the designated truth 
Set 

values Dp is the set of inhabited subsets of A. 
Let ij C i be a sub-PCA of A. Then, as noted in [Pit81, Page 15], 

taking D to be all those 1 -» PA corresponding to subsets A' ^-> A through 
which some a: 1 —> A in Aj factors results in a new tripos. We call this 
tripos the relative realizability tripos over A and A$ and denote it 
UFam(jMj) 

4/       .   Explicitly, predicates over I are maps <p: I —} PA, all the 
Set 

UFamfyl) 
logical operations are given as for       \p     , but the preorder is defined as 

Set 

<p r-/ V •£=> 3a e % Vie I. a e (<p(i) D 4>(i)), 

that is, the required realizer has to come from the sub-PCA A%. We shall 
return to this example in the following chapter. 
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We also recall the following observation from [PitSl, Page 15]: For the 
UFamf.-M,) 

tripos J,r        , the inhabited subsets of A form a filter 
Set 

$CUFam(^,.4tj)1 

UFam(i) 
and r$ (see previous section) is the standard readability tripos        l? 

Set 
over A. We shall return to this observation in Section 6.1 in Chapter 6. 

5.2    Tripos to Topos Construction 

From each B-tripos p, with B finitely complete, one can construct a topos, 
which will be denoted B[p]. The construction is a direct generalization of the 
construction by Higgs and Fourman-Scott [FS79] of the topos of //"-valued 
sets of a locale H. 

p 
Definition 5.2.1. Let |p  be a tripos. Write B[p] for the category with 

E 

objects pairs (/, «/) where 7 e B is an object of the base category 
and ss/G P/x/ is an "equality" predicate on I. The latter 
is required to be symmetric and transitive in the logic of 
p. This means that validity in p is required of: 

ii,i2: I | i\ «/ «2 I- i2 ~j h 

H, «2, h- I \ h ~/ «2, i-2 ~7 h r- h ~J «3- 

morphisms    /: (/,«/) ->■ («/,«/) are equivalence classes of relations 
F G P/xJ from I to J that are 

• extensional: 

*i)*2: I,h,J2- J | H ~/ «2,Jl ~J J2,F(i1,j1) 
\~F(i2J2) 

• strict: 

i: IJ:J | F(i, j) h (i «7 i) A (j «j j) 

• single-valued: 

*': IJuh- J | ^,(i,ii),-F(8,j2) l-Ji -.7.72 
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• total: 

i: I | i«/ i \~3j: J. F(i,j) 

The equivalence relation on these relations F is logical 
equivalence (in the internal language) as described by iso- 
morphisms in the fibre. To emphasize, F and F' are related 
iff they are isomorphic in the fibre Flxj. Equivalently, F 
and F' are related iff 

i:I,j: J\<D\-F(i,j) JO F'(i,j) 

is valid in the logic of p. For convenience, we usually write 
representatives F instead of equivalence classes [F]. A rela- 
tion F which is extensional, strict, single-valued and total, 
will also be called a functional relation. 

Sometimes we omit the subscript and write « for «/. Further, we write 
\h ~/ '21 for i\ ~i %2 (the vertical bars are just used for bracketing to make 
expressions easier to read). We write Ei(i) or E(i) for \i «/ i\. Thus Ej(-) 
is a unary predicate on I, defined categorically by Ei(-) = (id, «</)*(«/) G 
Pj. 

The identity morphism on an object (7,«/) of B[p] is the (equivalence 
class of the) relation «/ itself: 

ii,i2: I\- i\ ~/ i2- 

Composition of (/,~/) ^(^>~J) *-(Ä", «A") is the composite relation 
GoF, 

i:I,k:K\-3j:J. F(i,j)AG(j,k). 

The fundamental theorem of tripos theory is: 

P 
Theorem 5.2.2. For J,P  a tripos, the category B[p] is a topos. 

B 

Examples 5.2.3. 

(i) Let £ be a topos. If we apply the tripos to topos construction to 
the subobject fibration of S (the tripos from Section 5.1.2 we get, of 
course, back the topos £ itself. 
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(ii) For a canonical tripos p = £(-, H) on an internal locale 77 in a topos 5, 
the resulting topos £[p] is the topos of if-valued sets [FS79], equivalent 
to the category of £-valued sheaves on the locale H. 

VFam(A) 
(iii) For a standard readability tripos        ^p      over a PCA A, we de- 

Set 
note the resulting topos Set[p] by RT(A) and refer to it as the re- 
adability topos over A.   In case A is Kt, RT(A) is the effective 
topos [Hyl82]. The topos Set[r] obtained from the relative realizabil- 

VFam(A,At) 
ity tripos J,r        over PCA's A and A% (with A$ a sub-PCA of 

Set 

A) is denoted RT(^, A{) and referred to as the relative readability 
topos over A and A$. 

We now present some of the structure of B[p] that we shall use in the 
sequel. 

5.2.1    Finite Limits in B[p] 

The terminal object in B[p] is the terminal object 1 e B with equality 
predicate 

x: 1, x : 1 h \x «i x \ = T. 

We shall write 1 = (l,«i) € B[p] for this object. For each object (/,«/) in 
B[p], the (equivalence class of the) predicate E(i) G Pt = Plx/ is the unique 
morphism from (/,«/-) to 1. 

The product of (7, «/) and (J, «j) is the object 7 x J G B together with 
equality predicate 

Z, W : I X J h |7TZ «/ 7TW| A |7r'z «7 7T'IU|. 

The projection (7, «)-* (7 x J, «) >(J, «) maps are given by the pred- 
icates 

z: I x J,i: Ih |7nz«j i\AEj(ir'z) 

z: I x J,j: J h \K'Z «J j\ A Ei(irz). 

The tupling of two maps F: {K,tn) -*■ (7,«) and G: (A',«) -)• (J,«) in- 
volves the predicate 



5.2 Tripos to Topos Construction 117 

For parallel maps F and G, an equalizer 

F 

(/,«)>-=*(/,«) JJ, 
G 

is obtained by taking as new equality predicate « on I, 

iui2: I\- |t'iwr2| = |«i « i2| A 3j : J. F(i1,j)AG{i2J) 

This predicate « is also the equalizer map «: (/, ~) —» (/, ~) of F, G. 

5.2.2 Monomorphisms and Epimorphisms in B[p] 

A morphism F: (/, ~) —> («/, ~) in B[p] is a monomorphism if and only if 
one has in the internal language of p 

h,h- I,j- J I F{h,j) A F(i2,j) H |ii «/ i2|        «-e. single-valued in i 

Similarly, F is epi in B[p] iff 

j: J | 0 h 3i: L F(i,j)        i.e. total in j 

is valid in the logic of p. 

5.2.3 Subobjects and Powerobjects in B[p] 

To understand the nature of the subobjects in B[p] one uses so-called strict 
predicates. For an object (/, ~) € B[p], a strict predicate on (/,«) is a 
predicate A £ P/ which satisfies in p 

h,i2- I \ A(ii),ii^i i2\~ A(i2)        and        i: I \ A(i)\- Ei(i). 

We form a category SPred(p) of DC-equivalence classes of strict predicates 
by stipulating that a morphism from a strict predicate A on (7, «) to a strict 
predicate B on (J, «) consists of a map F: (I, «) —>• (J, «) in B[p] for which 
we have in p 

i:I\A(i)\-3j:J. F(i,j)AB(j). 

As usual, we do not distinguish notationally between a strict predicate and 
its equivalence class. 
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SPred(p) 

The forgetful functor      4-      is a poset fibration. The order in the fibre 
B[p] 

over (7, «) is the order inherited from p's fibre over 7: for strict predicates 
A, B on (7,«) one has 

A < B in SPred(p) over (/,«) «=>  i: / | A(i) I- B{i) in p. 

(On the left, < is a partial order between the equivalence classes of A and 
B; on the right h is a preorder.) For a morphism F: (7,«) ->■ (J,«) in B[p] 
and a strict predicate B on (J,«), one gets a strict predicate on (7,«) by 

K/hF*(S)(0d^f3j:J. F(i,j)AB(j). 

Strict predicates on (7,«) correspond to subobjects of (7, «) in B[p] in the 
sense that there is an isomorphism of fibred categories, 

Sub(B[p]) -^ SPred(p) 

Indeed, given a subobject represented by a monic M: (Y,«) >-* (A',«), we 
get a strict predicate on (A",«): a;: A' I- 3y: Y. Af(y,:r). Given a strict 
predicate R on (A", «) we get a new object |ji?[| by changing the equality on 
A to x, x': X Y- x ttX x' f\ R(x), and then x, x': A h x ax x' A Ä(a-) is a 
functional relation representing a monomorphism \\R\\ >-* (A,«). 

Given an object {X,fnx) in B[p], its powerobject P(X, «y) has under- 
lying object PX (given by item 4 in Definition 5.1.1) and equality 

R,S:PX\-\R KPX S\ = Vx: A. (x eX R DC x eX S) A EPX{R) 

where 

EpX{R) =f (Vs, x': A. a; GxfiAi «y »' D a;' GA' Ä) A 

(Vx:X. xex RD Ex{x)). 

The subobject classifier of B[p] is the object 

Q = (E, wn), 

where E G B is the object over which the generic predicate of p lies and «n 
is logical equivalence: 

p,g:EH|p«n 9| =f (p DC ?). 
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For a strict predicate A on (7, «) we get a . characteristic map cha iA): 
{!,'> «)-►(£,«) in B[p] by 

• i: I,p:E \~ c\mr(A)(i 
, def 

P)  = £(i) A A(i) X p|- 

5.2.4    Exponentials in B[p] 

J-J.„„   u„ 

the exponentials of B[p] can be described explicitly in the following way. 
Let E G B be the object over which the generic predicate in p lies. Then 

for the exponent of (7,«) and (J,«) we take P(I X J) = S/xJ as the 
underlying object with existence predicate 

/: P{I X j) h £■(/) =f "f is a functional relation". 

That is, 

E(f) =f(Vn, i2: 7. V?!, j2: 7. |*i «/ i2| A |ji ^j j2| A /(H,JI) D /(*'2)h)) A 

(Vi:7. Vj: J. /(», j) D £/(*) A £J(J)) A 

(Vt: 7. Vji, j2: J- /(*",Ji) A /(*, J2) D tfi ~J j2|) A ■        . 

(Vi: J.  E!(i)D3j:J. f(ij)). 

The equality predicate on the object P(I x J)  underlying the exponent 
(7, «) => (J, «) is then 

/, </: P(7 x J) h |/ « 5| =f E(f) A £?(flr)AVi: 7. Vj: J. /(z,j) X <jr(i, j). 

The evaluation map Ev: ((7, «) X (J,«)) ->• (J, «) is given by 

f:P(Ixg),i:I,j:J\- Ev(.f, i, j) tf f(ij) A £(/). 

For a morphism 77: (7v',«) x (7,«) ->• (J,«), the exponential transpose 
A(77): (7v, «) -> (7, «) =>■ (J, «) is given by 

k: KJ: IxJ\- A{H)(k,f) d= E(k) A £(/) A 

Vi:7. Vj: J. H(f,i,j)jCf(iJ). 

5.2.5    The internal logic of B[p] 

The internal logic of B[p] (i.e., the internal logic of the subobject fibration on 
B[p]) is most conveniently described as the internal logic of (the equivalent, 

SPred(p) 
see above) fibration       J,      of strict predicates.   If, for the time being we 

B[p] 

mark its connectives with a tilde ~, then expressed in terms of the connectives 
of p, which are written in ordinary fashion, we have 
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• prepositional connectives in the fibre over (F~) are i = _L, V = V, 
t = £j, Ä = A, ADB = EjA(A D B). 

• For a strict predicate A over (/,«) and a morphism 

3F(A)(j) = 3i:I. F(i,j)AA(i), 

VF(A)U) = E(j)A\fi: I. F(i,j) D A(i). 

In the special case where (I, «) is (#,«) x (J, «) and F is the projec- 
tion (//■,«) x (./,«) -» («/,«), the resulting equations are 

3h:H. A(h,j) = 3h:H.  E(h) A A(h,j) = 3h: H. A(h,j), 

Vh: H. A(h,j) = E(j)AVh: H. E(h) D A(hJ). 

SPred(p) 
The generic object of      I      is the strict predicate 

B[p] 

p: S h true(p) =f |p DC T|. 

on the subobject classifier fi = (E, DC) 

5.3    The "Constant Objects" Functor 

p 
Definition 5.3.1. Let B be a finitely complete category and \p  a tripos. 

B 
The constant p-object on an object X <E B, denoted VP(A"), has under- 
lying object X and equality predicate x,x': X \ (x zsvx X') =f 35x(TA-), 
where Sx : X ->• A' X X is the diagonal map in B. For each map /: A ->• y 
in B, 3<WXI/)(TA-) € P^xy represents a map Vp(/): VP(A) -> Vp(y). This 
defines a functor Vp : B -   ~r 

The constant objects functor is left exact. 

Remark 5.3.2. The constant objects functor is so named because in lo- 
calic examples it indeed assigns constant sheaves to objects from the base 
category. In early writings [HJP80, Pit81, Hyl82], the functor was denoted 
Ap; we follow the newer notational convention [CFS88, HRR90] of writing 
Vp for the functor because it, in realizability examples, is right adjoint to 
the global sections functor F and not left adjoint. 
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The topos B[p] looks like being "generated by 1" over B, in the following 
sense. Every object (A",«) of B[p] occurs as a subquotient of a constant 
p-object 

(A',«) 

in B[p] (the quotient map is represented by the equality predicate on A'). 

5.4    Geometric Morphisms of Triposes 

Geometric morphisms of triposes generalize continuous functions of locales, 
and just as a continuous function of locales give rise to geometric morphism 
of sheaves on locales, a geometric morphism of triposes gives rise to a geo- 
metric morphism of the induced toposes. 

P 
Suppose that /: F -> Q is a fibred functor between triposes J,P   and 

E 
© 
4/1  and that / preserves fibred finite limits (T and A). Then for an object 
E 
(X, «) in B[p], 7(A, «) = (X, /(«)) is a well-defined object of B[q]. However, 
since / does not necessarily preserve existential quantification (3), given a 
functional relation F G FxxY representing a morphism /: (X,«) -> (Y,« 
), 1(F) 6 QxxY will only De a partial functional relation, i.e., strict, 
extensional, and single-valued, but not necessarily total. Using a notion of 
complete object we shall see how to extend I to morphisms in 

Definition 5.4.1. Let p be a tripos over B. An object (Y,«) € B[p] is 
complete if given a partial functional relation F from (A,«) to (Y, ~), 
there is /: X ->• Y in B such that 

x:X\$\-3y:Y. F(x, y) DC F(x, fx) 

is valid in the logic of p. 

Remark 5.4.2. In [HJP80, Pit81] a complete object was called "weakly 
complete" but since it is not weak in any sense, we just the word complete. 

P 
Proposition 5.4.3. Let \p   be a tripos.   Any object (A,«) G B[p] is iso- 

B 
morphic to a complete one. 
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Proof Sketch. (A",«) is isomorphic to the complete object S(X,&), where 
S(X, «) is the subobject ||S'A'|| ^ P(A', «A') of the powerobject of (A",«) 
given by the strict predicate S'A G Ppx: 

R: PX | 5A-(Ä) =f 3.1-: A. (x tsx x A W e A. (a:' ex R X ar «A *'))• 

See [HJP80, Pit81] for more details. D 

P Q 
Lemma 5.4.4. Suppose that I: P ->■ Q is a fibred functor from ^P   to ^ 

B B 
preserving fibred finite limits. Let (A",«) em</ (Y,«) 6e objects o/ B[P] and 
suppose (Y,«) is complete. Then for any functional relation F from (X, «) 
to (F,«), /(F) is a functional relation from l(X,«) to 7(1',«). 

Thus given_any / = [F]: (A,«) -► (Y,«) in B[p] with (Y,«) complete, we 
can define /(/) to be [/(F)]. Using Proposition 5.4.3 we can then extend 7 
to a left exact functor B[p] -» B[q]. For more details, see [Pit81]. 

P Q 
Definition 5.4.5. Let B be a finitely complete category and let 4,p and J,q 

B B 
be triposes over B. A geometric morphism /: p -» q is given by a pair of 
fibred functors /* : Q -+ P and /* : P -> Q over B, as in 

/. 

/* 

such that /* is a fibred left adjoint of /* and such that /* preserves fibred 
finite limits. 

Given such a geometric morphism /, since /* and /* both preserve fibred 
finite limits, we get induced left exact functors J* and /„ between B[p] and 
B[q] defined as above. In fact, since /* preserves existential quantification (as 
a fibred left adjoint), /  may be constructed without recourse to completions. 

Proposition 5.4.6. Let f = (/*, /*) be a geometric morphism. of triposes, 
as in 

/. 

/* 
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Then / = (/*>/*): ®[p] "^ ®M zs ö geometric morphism of toposes. 

Proof Sketch. Suppose, without loss of generality by Proposition 5.4.3, that 
(A', «) G B[p] is complete. The counit £(*,«): 7"/* (A,«) ->• (A',«) is 
represented by the functional relation 

£(x, a;') = /*/* (a: « a;) Ai«i'. 

For any g = [G]: /*(F, ~) —>• (A', «), the associated unique morphism 
g: (Y, «) -> /*(A",«), as in the diagram 

7* (A", ~x) 77„(*, ~A0 -1* (*, «AO 

si Ta 

(Y,*Y) 7(Y,~Y) 

is represented by the functional relation G given by 

G(y,x) = /*(G(y,ar))A(y«y). 

See [Pit81] for more details. D 

The following observation is easy, but useful in the following. It has 
probably been know to Hyland and Pitts, but I have not seen it written 
down anywhere, so I include a proof here. 

P 
Proposition 5.4.7. Let 3 be a finitely complete category and let J,P   and 

B 

© 
4,q   be B-triposes. Suppose f = (/*, /*): p —>■ q is a geometric morphism. of 
B 
triposes.   Suppose further that f* is full and faithful, and that fx preserves 
existential quantification.   Then also the induced functor f   is full and and 
faithful. 

Note that whenever /* has a fibred right adjoint, it preserves existential 
quantification (as a fibred left adjoint). 

Proof. We show that the unit rj: id =? f*f is an isomorphism, from which it 
follows that / is full and faithful [Mac71, Dual of Theorem 1, Section IV.3]. 

Now since /* preserves existential quantification, both /* and / may be 
constructed without recourse to completions so that / (A,«) = (A, /* «) 
and /*(Y,«) = [Y, /* «). The unit TJ: id => /„/ is then given by the 
functional relation r)(x, x') = \x « x A f*f*(x « x')\: (A', «) ->• (A', /*/* «). 
But /*/* = id by the assumption that /* is full and faithful, so r)(x,x') = 
x « x', the identity on (A,«), as required. D 
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The following theorem was known to Martin Hyland but apparently has 
never been published.2 We include a proof here. See [Joh77, Joh79a, Joh81] 
for more on localic geometric morphisms. 

P © 
Theorem 5.4.8. Let B be a finitely complete category and let \p   and \<\ 

B E 
be B-triposes.   Suppose f = (/*,/*): p -S> q is a geometric morphism of 
triposes. Then B[p] is localic over B[q] via the induced geometric morphism 

Proof. We want to prove that B[p] is equivalent to the category of 
valued sheaves on the internal locale /*(fiB[p]) in B[q].   As usual [Joh7v, 
Joh79a, J0I18I] it suffices to show that, for all X £ B[p], there exists a 
y € B[q] and a diagram 

in B[p] presenting A' as a subquotient of/ Y for Y an object of B[q]. Write 
Vp: B ->■ B[p] for the constant objects functor for p. Then, as noted in 
Section 5.3, for any A' £ B[p], there exists an object I £ B and a diagram 

5—*Vp(/) = (J,3*,(T)) 

(5.1) 

X 

in B[p] presenting X as a subquotient of a constant object Vp(7). Now since 
/* is the inverse image of a geometric morphism of triposes, /* preserves 
existential quantification (as a fibred left adjoint), so /*(Vq(7)) = Vp(7), 
and the diagram in (5.1) is the required diagram. D 

5.5    Topologies and Sub-Triposes 

The notion of a Lawvere-Tierney topology on a tripos is a generalization 
of the notion of a nucleus (or j-operator) on a locale and just as a nucleus 

Martin Hyland suggested me to prove an instance of this result for some specific 
realizability triposes. I found a proof and saw that it applied in general to arbitrary 
triposes as shown here; a fact that Hyland, as expected, was aware of. 
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on a locale gives rise to a subtopos of the topos of sheaves on the locale, a 
Lawvere-Tierney topology on a tripos gives rise to a subtopos of the topos 
resulting from the tripos. 

We confine ourselves to the case when the tripos p is a canonically pre- 
sented tripos on an object E in a topos £, i.e., when the fibre over / is 
£(I, S), and reindexing is given by composition. 

Definition 5.5.1. A (Lawvere-Tierney) topology on a canonically pre- 
P 

sented £-tripos X?  is an inflationary, idempotent, left exact fibred functor 
e 

J: P -*• P over £. 

Such a topology on p = £(—, E) can be specified by a map J: S —>■ E in 
£ satisfying 

• p, q: E | 0 h (p D q) D (Jp D Jq) 

• 0 | 0 H J(T) 

• p:S |0h J(Jp) D Jp 

in the logic of p. 
Such a map J: E —» E represents a strict predicate on fi = (E, DC) G 

£[p], which is the generic j-dense subobject of Q. That is, the classifying 
map of the subobject \\J\\ >-» Q is a Lawvere-Tierney topology j: Q —> fi in 
£[p], as in 

where, recall, |J|| = (E, RJJ) with \p mj q\ = (p DC g) A J(p). 
Let Shj£[p] be the sheaf subtopos corresponding to a topology J on p. 

Then Shj£[p] is equivalent to £[pj] for some canonically presented £-tripos 
pj, described as follows. Tripos pj is also canonically presented on E, but 
D, V, and D are redefined by letting 

• DPJ be E x E-^^E X E^^-E, i.e., {ip DPj ifr) = (<p Dp Jil>), 

• (VF)(¥>) be (VF)(J<p), 

• l^^S be in DPj iff 1—^E^^E is in Dp. 
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Thus <p hPj t/' iff <t> l~p Jip, whilst T, A, J_, V, and 3 remain unchanged. 
Let / = (/*,/*): p —>■ q be a geometric morphisms between ^-triposes. 

Then J = /*/* is a topology on q and the surjection-inclusion factoriza- 
tion [MM92] of the induced geometric morphism /: £[p] —> £[q] takes the 
form 

S[p] *£[qj]<—+£[q]. 

Thus / is an inclusion iff /*/* = id, and in this case we shall say that / is 
an inclusion of triposes. 



Chapter 6 

The Relative Realizability 
Topos RT(J4, A$ 

In the present chapter we initiate our study of the relative realizability topos 
RT(yl, yljj) obtained from the relative realizability tripos in Section 5.1.4 by 
the standard tripos-to-topos construction. We show how RT(^4, A$) relates 
the standard realizability toposes RT(A$) and RT(^4); in particular, we prove 
that there is a localic local geometric morphism from RT(^4, A$) to RT(J4[j). 
In Chapters 7-9 we study local geometric morphisms at an abstract level, 
and in Chapter 10 we then return to study RT(,4, A$) in more detail. 

For the remainder of this chapter, we let A be a PCA and let A$ C A 
be a sub-PC A of A. Recall from the introduction in Chapter 1 that we are 
thinking of the realizers from A as "continuous" and of the realizers from A$ 
as "computable." Thus we shall call elements of A continuous realizers 
and elements of A$ computable realizers. 

Example 6.0.2. There are many examples of PCA's A with a sub-PCA 
A$. Here are a few: 

1. A = P, the graph model of the lambda calculus, see Example 3.1.15, 
and let A$ = RE, the recursively enumerable graph model, see Exam- 
ple 3.1.16. Note that P has a continuum of (countable) sub-PCA's. 

2. A is Kleene's second model NN, see [Bee85, Section VI.7.4], and A$ 
is the sub-model of recursive functions from N to N, see [Bee85, Sec- 
tion VI.7.5]. 

3. A is van Oosten's combinatory algebra B for sequential computation 
and J4JJ is its effective subalgebra Beff, see [v099, Lon98]. 

127 
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VFam(A) UFam(.4,) 
Convention 6.0.3. Let       >      and        J,q       be the standard realizabil- 

Set Set 
UFamf^,^,) 

ity tripos over A and A$, respectively, and let \r be the relative 
Set 

readability tripos over A and A§.   We denote the resulting readability 
toposes in the following way: 

RT(A) = Set[p] 

Kr(At) = Set[q] 

RT(,4,AÖ) = Set[r]. 

Before going into the relationship between RT(A, A$) and RT(A) and 
RT(.4|j), let us for emphasis write out explicitly what the object and mor- 
phisms of RT(A,Au) are. Objects of RT(A,A$) are pairs (X,tax) with 
A' e Set a set and siX ■ X X X ->• PA a non-standard equality predicate 
with computable realizers for symmetry and transitivity. Thus we require 
that both 

(AJ n    f)    ((* siX x') D (x' six x))) # 0 
x,x'ex 

(At n      ft      {(x «* a;') A (a;' «A- a;") D (.T «* a;"))) # 0, 

hold, where, for p, q £ P.4, 

p A g = { (a, 6} | a £ p and & £ q } 

pD q = {ae A\\/bep. a-b£q}, 

see Section 5.1.4. 
A morphism /: (X,siX) -> (y,«y) is an equivalence class / = [F] of 

(P,4)-valued functional relations F: XxY -t PA with computable realizers 
for functionality. That is, we require that 

[M n f| ((*• Six x') A (y siY y') A F(x, y) D F(x\ y'))) + 0 

(M 
n    Pi    (^ 2/) D (* «A- *) A (y «y y))) ^ 0 

^eA',yr 

(^tt n        f|        (F(x-, y) A F(z, y') D (y «y y'))) ^ 0 
x,€X,y,y>eY 

[AtD f|  ((ar^^D UF(x,y)))^0 
X,€X yeY 
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all hold. 
Two such F and F' are equivalent just in case 

(4,n      fl      (F(x,y) JZF'(x,y)))^$. 

We now see that, intuitively speaking, it makes sense to think of objects of 
RT(^4, Aft) as objects with continuous realizers for existence and equality of 
objects, and of morphisms / = [F] as computable maps, since the realizers 
for functionality of F are required to be computable. Thus the slogan is: 

Slogan. RT(A,Afi) has "continuous objects and computable morphisms." 

UFam(.4,Aj) 
Remark 6.0.4. The relative readability tripos J,r        underlying the 

Set 
topos RT(A, Aß) can also be obtained from a WCPC-category: consider the 
monoid M(A, Aft) of ^-definable partial functions from A to A and the func- 
tor U0: M(A,A{) -» Ptl the inclusion functor. Let C = Split(M(A, Aft), U0) 
and let U = Split (U0) (see Page 62). Then C is a WCPC-category and 
the pretripos generated by C and U is equivalent to the readability tripos 
VFsan(A,At) 

I' ■ 
Set 

6.1    On the Relation Between RT(A,A{) and RT(A) 

Recall from Section 5.1.4 that the inhabited subsets of A form a filter $ in the 
fibre over 1 in the tripos r and that tripos p is exactly r$, see Remark 5.1.3. 
Then as in [Pit81, Page 26], we can define a filter $ of subobjects of 1 in 
RT(^, Aft) = Set[r] consisting of 

IMI ~ 1, 

with |<,o| = (1, (*, *) i->- ¥>(*)), for each if G #. Then as Pitts remarks [Pit81, 
Page 26], the filter-quotient RT(^, Aft)^ is equivalent to Set[r$] = Set[p] = 
RT(A). Under this equivalence, the logical functor RT(yl, Aft) -» RT(yl, A$)^ 
is identified with the obvious functor from RT(yl, Aft) —» RT(.A) which is the 
identity on objects. See [MM92, Joh77, LM82] for more on filter-quotients 
(also called filter-powers). 
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6.2    On the Relation Between RT(^, 4ft) and RT(^) 

We now define three fibred functors over Set among the triposes q and r 
underlying RT(;4, Aö) and RT(At), as in 

UFam(y4 UFam(,4, At) 

The functors are defined by 

A(V':/->P,4Ö) =i> 

T(ip: I ->■ PA) = Xi. A^nipit) 

V(V>: / -* PAt) = Xi.    (J   (<pA(Atn(pDt/>(i) 
VEPA 

with A and D calculated as in r's fibre over 1, i.e., in UFam(,4, ^4^),. 
The above equations give the action of the functors on objects. The 

action of each of the functors on a morphism is the identity action. (Recall 
that in UFam(^4jj) there is a morphism u: V> ->■ i>', with tp G UFam(y4ö)/ 

and V' G UFam(,4|))<7 exactly if ^ is less than tp'ou in the fibre UFam(ij)7. 
Likewise for UFam(i, A$).) It is easy to see that A and V are well-defined 
fibred functors and that V preserves cartesian morphisms (recall that the 
cartesian morphism over u is u itself) and that rV = q. To verify that 
the functors are well-defined, it thus only remains to verify the functoriality 
of V. To this end, suppose that u : tf> -> V' in \JFam(A$), i.e., that 
$ <UFam(.4,)J i

1' ° «• Then there is a realizer c € A§ such that 

ce n^w^^xo))- 
iei 

Let 

d = Xx. (nx,Xy. c(w'(x)(y))). 

Then d £ A$ (since c € A%) and it is easy to verify that 

def)(V(4>)(i)DV(ip')(u(i)), 
iei 

as required. 
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Theorem 6.2.1.   Under these definitions it follows that 

1. (A, T) is a geometric morphism of triposes from r to q. 

2. (r, V) is a geometric morphism. of triposes from q to r. 

3. For all I G Set, A/ and Vj are both full and faithful. 

Remark 6.2.2. Item 3 is equivalent to A and V being full and faith- 

ful [Jac99, Exercise 1.7.2]. 

Proof. It is easy to see that A is left adjoint to T using that A$ is closed 
under the partial application of A. Further, it is clear that A preserves finite 
limits and is full and faithful since h^ and \-rj are denned in the same way 

(requiring computable realizers). 
By Lemma 2.2.11 it suffices to show that Vj is left adjoint to Ti, for 

all / G Set (the Beck-Chevalley condition in Lemma 2.2.11 is easily seen to 
hold). Since q and r are both fibred preorders, we just have to show that 

for all if £ UFam(^,J4jj)7 and all V' € UFam(J4t))/. To this end, suppose 
ip hrj Vip, via a realizer c G A$. Let 

d = Xx. TT(C(X))(TT'(C(X))) G A$. 

It is easy to verify that d is a a realizer for Tip h^ ip. 
For the other direction, suppose d G A§ is a realizer for Tip Kj! ip. Then 

c= Xx. (x,Xy. d(y)) G A$ 

is a realizer for <p \-rj Vip. 
Since A is full and faithful and since A H T H V, also V is full and 

faithful [MM92, Lemma 1, Section VII.4], completing the proof of the the- 

orem. □ 

By Proposition 5.4.6 these geometric morphisms (A, T) and (r, V) of tri- 
poses lift to two geometric morphisms between the induced toposes, as in 

A 

RT(y4B)^-r— RTOMH),        AHTHV. 

(Here we do not distinguish notationally between the functors at the tripos 
level and at the topos level).   In particular, A preserves finite limits.   By 
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Proposition 5.4.7, A: RT(.4Ö) -> RT(yl,^ö) is full and faithful and thus, 
by [MM92, Lemma 1, Section VII.4], also V: RT(,4fj) ->■ RT{A,At) is full 
and faithful. Hence TA ^ 1 ^ TV. The geometric morphisms (A,T) is 
therefore a connected surjective geometric morphism and (r, V): RT(^o) -¥ 
RT{A, At) is an embedding (see [MM92, Chapter VII] or [Joh77, Chapter 4] 
for more on different classes of geometric morphisms). By Theorem 5.4.8, 
RT(A,A$) is localic over RT(A$) via the geometric morphism (A,T). Sum- 
marizing we have: 

Theorem 6.2.3. The geometric morphism, (A,T) : RT(^,^(j) -» RT(AA 
is a localic local map of toposes. 

Proof. (A, T) is localic as remarked above and it is local since T has a right 
adjoint V for which rv = 1. □ 

Local maps of toposes have been studied by Johnstone and Moerdijk [JM89] 
and provide an instance of what Lawvere has called unity and identity of 
opposites [Law91, Law89]. We will have a lot more to say about local maps 
in the following chapters. 

For future use we now state explicitly some of the data given by the 
adjunction A H T. 

Consider first the adjunction A H T. Since T at the level of triposes 
has a right adjoint, both A and T are defined defined without recourse to 
completions so that A(F,«y) = (Y,faY) and T(X,fax) = (X,T «A')- As 

already observed, the unit r): 1 => TA is naturally isomorphic to the identity. 
The counit e: AT ^> 1 at an object (A', äS) 6 RT^,^) is represented by 
the functional relation E given by 

E(x, x') = AT(x « x) A (x w x') 

= (x fa x) n A$ A (x « x') 

(see the proof sketch of Proposition 5.4.6). For a morphism 

g=[G]:A(Y^Y)^(X,fax) 

in RT(A,A$), the associated unique morphism g: (Y,faY) ->■ T(X,fax), as 
in the diagram 

A 
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is represented by the functional relation G given by 

G(y,x) = T(G(y,x))A(y^Yy) 

= G(y, x) n At A (y «y y) 

^ G(j/, a;) n ^ 

(the last isomorphism since G' is strict and A is the identity). 
Regarding the adjunction T H V, note that since V at the level of triposes 

does not preserve existentials, V: RT(yltj) -> RT(^1, A$) is constructed using 
completions and is therefore not so easily described explicitly. Since we shall 
not need to calculate with this adjunction explicitly, we do not include a 
detailed treatment of it here. 

Geometric Morphisms from Set to RT(A,A$) and RT(J4j) 

Following Pitts [PitSl, Examples 4.9, Page 53] there is a geometric morphism 
of triposes as in 

Sub (Set) ZT~    T       _ UFam(^B) 

Set 

explicitly given by 

7q(V>:/->iM||) = {ie/|tf'M/0} 

s tji    n - •     1'Ai   if i e Jr'' 
~ [0       otherwise. 

We denote the resulting geometric morphism by (Fq, Vq) = (j^, 8q), as in 

Set^T^RT(Aö) 

As the notation suggests, Vq is indeed the constant objects functor from 
Section 5.3. 

Explicitly, Tq may be described as follows. An object (I,«/) is mapped 
to the quotient set Dom(~)/~, where i ~ i <£=$> \i «/ i\ ^ 0. A morphism 
f — [F] : (7, «) —> (J,«) is mapped to the function which maps [i] to [j] 
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iff F(i,j) ^ 0. The functor Tq is isomorphic to the global sections functor 
HomRT(_4(l)(l,-). 

Explicitly, the functor Vq maps an object I £ Set to the object (7,«/) 
with 

..       ..      (A$    if i = i', 

I 0      otherwise. 

A function / : I ->• J is mapped to the morphism [F] with 

10      otherwise. 

In much the same way, we get an geometric morphism of triposes as in 

Sub(Set)^       T   ~^UFamU,iB) 

Set 

with the functors explicitly given by 

jr(^: I ^ PA) = {ie I \^(i)^H)} 

x IT' r- n      •       (^    if t € /', 
I 0     otherwise. 

We denote the resulting geometric morphism by (rr, Vr) = (T7Ä), as in 

Vr 

Set^T^RT(^,^u). 

Explicitly, Tr may be described analogously to Tq, i.e., an object (I,«/ 
) is mapped to quotient set Dom(~)/~, where i ~ i ■<=> \i taj i\ jL 
0. But notice that Tr is not (isomorphic to) the global sections functor 
HomRT(A)4|J)(l, -)! For a concrete counter-example, suppose A§ is a proper 
sub-PCA of A and consider the object (I, «7) in RT(A, A$) with \i «7 i'| = 
A \ A$. Then rr(/,«j) is isomorphic to the terminal object of Set, a one- 
element set. But HomRT(i4iil|()(l, (/,«/)) is empty (there is no functional 
relation with a realizer in A$ for totality). 
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The functor Vr maps an object I e Set to the object (/,«/) with 

def \A    if « = /', 

I 0     otherwise. 

A function / : 7 -> J is mapped by Vr to the morphism [F] with 

F(|. .)=<M  if/(0 = i, 
) 0     otherwise. 

For the record state the following observation. 

Proposition 6.2.4.  The functors 8q and 8r preserve coproducts (existential 
quantification 3). 

Proof. We just consider <5q; the reasoning is similar for 5r. Let u : I ->■ J in 
Set. For V C 7, let «*(/') denote the image of V under u. Then 

Sq(3u(I'c I)) = 8q(u*(I') c J) 

(A^   if je «,(/'), 
10      otherwise, 

and 

3u(Äq(/' C /)) = 3u(-ip)    where ^>(i) = At if i € /', 0 otherwise 

.     \A)   if 3iei'.u(i) = j 

I 0      otherwise. 

Since <5q(3u(/' C /)) = 3U(£<,(/' C /)), we have the required. D 

Theorem 6.2.5.  Consider the following diagram, all fibred over Set, 

UFam(A,|) T^~~ r-        ~~~""^ UFam(i, A$) 

AHTHV, 

7q  H^q 

7r H V 

Sub (Set) 

Then 
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1. AoSq^ Sp 

2. To Sp £ 8q 

3. 7g o r H V o Sq 

Proof. Straightforward. D 

This theorem then extends to the level of toposes in the obvious way. Ex- 
plicitly we have the following. 

Theorem 6.2.6.  Consider the following diagram of toposes and functors: 

A 

RT(A RT(A,At 

AHTH V, 
rqnvq 

rr H vr. 

Set 

Then 

1. A o Vq ^ Vr 

2. r O Vr £ vq 

3. rq o r -\ v o Ar 



Chapter 7 

An Elementary 
Axiomatization of Local 
Maps of Toposes 

In this chapter we present an elementary axiomatization of local maps of 
toposes. The axioms are shown to be sound and complete in the sense that 
whenever a topos satisfies the axioms then it gives rise to a local map and, 
moreover, any local map of toposes satisfies the axioms. Below we first recall 
the definition of a local map of toposes in Section 7.1. In Section 7.2 we 
then describe the approach to the axiomatization that we will take and we 
recall some material on orthogonal and coorthogonal categories from [KL89]. 
Finally, in Section 7.3 we present our axiomatization of local maps and show 
that they are sound and complete. We first present a number of definitions 
of relevant concepts and prove some properties of these concepts before we 
suggest the actual axioms and prove that they are sound and complete. Our 
development will be done in category-theoretic language but sometimes we 
also include corresponding treatments phrased in the internal language of 
the relevant toposes. 

As explained in the previous chapter the axiomatization presented here 
is motivated by our study of the relationship between the relative realiz- 
ability topos RT(,4, A$) and the readability topos RT(^4(j). In this chapter, 
however, we stay completely general and concern ourselves with arbitrary 
local maps of toposes. It can thus be read independently of the rest of the 
thesis. 

137 
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7.1    Local Maps of Toposes 

Before recalling the definition of a. local map, we recall the standard notion 
of a bounded geometric morphism [Joh77, Section 4.4]. For explanatory 
remarks on this definition, see loc. cit.. All of this chapter, except Sec- 
tion 7.3.2, and also the following chapters, in which we focus on localic local 
maps, can be read without worrying about boundedness. 

Definition 7.1.1. Let /=(/*, /*): £ -»• T be a geometric morphism and 
let G be an object of E. 

1. G is an object of generators for £ over T (via /) if, for any X € E, 
there exist an object Y G f, and a diagram 

S> *f*(Y)xG 

X 

in E presenting A" as a subquotient of f*(Y) x G. 

2. The geometric morphism /: E -)■ T is bounded if E has an object of 
generators over T via /. 

Recall that a geometric morphism /: E ->■ T is localic if / is bounded 
and the object of generators is the terminal object 1. In other words, localic 
geometric morphisms are a special case of bounded geometric morphisms. 

We now recall the definition of a local map of toposes [Law86, Law89, 
JM89] (see in particular [JM89, Proposition 1.4]). 

Definition 7.1.2. Let E and T be elementary toposes. A geometric mor- 
phism / = (/*,/*): £ ->• T is local if it is a bounded geometric morphism 
and if the direct image functor /* has a right adjoint f which is full and 
faithful. 

Examples 7.1.3. 

(i) Let X be a topological space, and suppose that there is a generic point 
x e X, that is, a point x whose only neighborhood is the whole space. 
The space X could, e.g., be a Scott domain (viewed as a topological 
space with the Scott topology) with the point x the least element _L 
of A'. Then the geometric morphism (A,T): Sh(A") -» Set from the 
topos of sheaves on A to Set is local.    The reason is that in this 
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case the global sections functor T is seen to coincide with the stalk 
functor F H> Fx (use, e.g., [MM92, Section II.5, Pages 83-84]) and 
therefore, by [MM92, Lemma II.6.7, Page 93] it has a right adjoint (the 
sky-scraper sheaf functor Sky^ concentrated at a-). A more abstract 
description of this example can be found in Section 9.2. 

(ii) The geometric morphism (A,T): Yd{A,Ai) -» RT(,4jj) from the rel- 
ative readability topos over A and A$ to the standard readability 
topos over A$ is local, see Theorem 6.2.3. 

(iii)  Let C be a small category with finite limits and i: Dc >C a full 

subcategory, closed under the same. The geometric morphism C —> D 
between the presheaf categories with direct image the restriction i* 

along i is then a local map. 

(iv) The topological topos of Johnstone [Joh79b] is local over Set. 

(v) The "gros" topos of sheaves for the open cover topology on a suitable 
small subcategory of topological spaces, see [MM92, Chapter III, Sec- 
tion 2] is local over Set. Indeed the global sections functor has a left 
adjoint sending sets to (functors represented by) indiscrete spaces and 
a right adjoint defined by means of indiscrete spaces. According to 
Johnstone and Moerdijk [JM89], the definition of "gros topos" does 
not yet seem to admit a precise definition, but Lawvere [Law86] has 
argued that the property of being local should be part of the definition 
of a gros topos. We hope that our axiomatization of local maps may 
prove useful in establishing a suitable definition of gros topos. We 
remark that one may consider the exact completion (Top )ex/iex of the 
category of topological spaces Top as an example of a gros non-topos 
which is "local" over Set [CR99, MS99]. 

For more examples of local maps, see [ABS99, JM89] and the references 

therein. 
Local maps of toposes have been pictured in an interesting way by Law- 

vere [Law86, Law89, Law91] as a so-called adjoint cylinder — from [Law91] 
we quote: 

By a level in a category of Being, I mean a ("downward") functor, from 
it to a smaller category which has both left and right adjoints which 
are full inclusions. Such a pair of categories and triple of functors 
is a unity-and-identity-of-opposites (UIO) in the sense that the big 
category unites the two opposite subcategories which in themselves are 
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identical with the smaller category. One can picture the big category as 
a (horizontal) cylinder, some objects of which lie on the identical right 
or left ends. The two ends are opposite not only because we picture 
them so, but for the intrinsic reason of adjointness; every object in 
the category lies on a unique horizontal thread, two objects lying on 
the same thread iff the downward functor assigns to them isomorphic 
objects in the smaller (or lower) category. 

The adjoint cylinder is pictured as follows: 

£ 

7.1) 

7.2    Approach to Axiomatization 

In this section we recall some background material from [KL89] and outline 
the approach we take to the axiomatization of local maps. 

For the remainder of this section, let £ and T be two elementary toposes 
with adjoint functors between them, as in the situation 

A H r H V, A full and faithful and lex. (7.2) 

Recall that a full subcategory B of a category A is said to be replete if, 
whenever IGB and X = Y in A, then also Y eB. 

By analogy to topological examples [Joh79b, Law89, Law86] in the situa- 
tion in (7.2) we refer to the objects in the replete image of A as the discrete 
objects and to the objects in the replete image of V as the codiscrete ob- 
jects. 

Note that since A is full and faithful we have, by [MM92, Lemma 1, 
Section VII.4, Page 369] (or [KL89, Proposition 2.3, Page 297]), that also V 
is full and faithful. 
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In the situation above we thus ha.ve a geometric morphism (r, V): T —> 
£, whose direct image functor, V, is full and faithful. It follows by standard 
results [MM92, Corollary 7, Section VII.4, Page 375] that there is a Lawvere- 

Tierney topology j on £ and an equivalence T—|p>Shj£ such that the 

diagram of geometric morphisms 

(r,V) 

commutes up to a natural isomorphism e*i* = F. Here i = (i*,i*) = (*M) 

with a the associated sheaf functor and i the inclusion of sheaves. From the 
proof of [MM92, Corollary 7, Section VII.4, Page 375] it follows that 

e=(e*,e*) = (roi,aoV). 

From the equivalence T—^-»-Shj£ it follows that the associated sheaf func- 

tor a has a left exact left adjoint, namely A o T o i H a. Summarizing we 
thus have the following situation 

AHFH V, 
AVi H a H i, 
Tia^r, 
aVTi^id, (7.3) 
TiaV^ id, 
A full and faithful and lex, 
V full and faithful. 

We now state a couple of conventions and then recall the notion of an es- 
sential localization from [KL89]. 

Convention 7.2.1. For the remainder of this chapter we will confuse T 
with its full replete image along A in S. In other words, we will assume A 
is just an inclusion functor. Moreover, we abbreviate and use subcategory to 
mean a full replete subcategory. 

Recall that a subcategory B of a category A is reflective if the inclusion 
of E in A has a left adjoint, called the reflector. A reflective subcategory B 
of a lex category A is said to be a localization of A if the reflector preserves 
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finite limits, and a localization B of A is an essential localization if the 
reflector has a left adjoint. Thus in our situation (7.3), Shj£ is an essential 
localization of £. 

Dually, we say that a subcategory B of A is coreflective if the inclusion 
of B in A has a right adjoint, called the coreflector. A coreflective subcat- 
egory B of a category A with finite colimits is said to be a colocalization 
of A if the coreflector preserves finite colimits, and a colocalization B of A 
is said to be an essential colocalization of A if the coreflector has a right 
adjoint. Thus in our situation (7.3), T is an essential colocalization of £. 

We shall make use of the fact that reflective subcategories can be char- 
acterized by an orthogonality condition. Therefore we recall the following 
definitions and notation from [FK72], see also [KL89, Bor94a]. 

Let /: A -> B be a morphism in a category C and let X be an object 
of C. Then we say that / and X are orthogonal and write / 1 X when 
C(/,A'): C(B,X) -»• C{A,X) is a bijection, that is, if for all a: A-> X, 
there exists a unique b: B —»■ X such that 

A^+X 

f 
y / 

/ b 

B 

commutes. Moreover, we say / and X are coorthogonal and write X T / 
when C(A", /): C(A", A) -> C(A", B) is a bijection, that is, if for all b: X -»■ 
B, there exists a unique a: X —>■ A such that 

A 
■i a / 

/ 
/ 
~^B 

commutes.1 

For a subcategory B of A we write Bx for the class of all morphisms 
orthogonal to every X 6 B, and given a class of morphisms V of a category 
A, we write VL for the subcategory given by those X £ A orthogonal to 
every f eV. Likewise, for a subcategory B of A we write BT for the class of 
all morphisms coorthogonal to every X e B, and given a class of morphisms 

1 Comparing with the terminology in [Bor94a], / and X are orthogonal in our sense 
if / is orthogonal to X in the sense of item (1) in Definition 5.4.2 of [Bor94a]; and / 
and X are coorthogonal in our sense if X is orthogonal to f in the sense of item (2) in 
Definition 5.4.2 of [Bor94a]. 
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V of a category A, we write VT for the subcategory given by those X G A 
coorthogonal to every / £ V. 

Further recall that orthogonality conditions describe reflective subcate- 
gories and that, dually, coorthogonality conditions describe coreflective sub- 
categories: 

Proposition 7.2.2. Let B be a reflective subcategory of A with reflector 
R: A —>■ B. Write T> for the class of all morphisms f in A inverted by R 
(i.e., for which R(f) is iso). Then B = VL and, moreover, Bx = V. 

Proof. See [Bor94a, Proposition 5.4.4] or [KL89, Proposition 2.1]. D 

Thus by Proposition 7.2.2 (see also [Joh77]), the category Shj£ is exactly 
V1, where V is the class of morphisms inverted by the associated sheaf 
functor a. Moreover, by Convention 7.2.1, T is precisely VT, where V is 
the class of morphisms inverted by T. 

Following Kelly and Lawvere [KL89], an ordered pair (B, C) of subcat- 
egories of A is called an associated pair (of A) if B is reflective, C is 
coreflective, and Bx = CT. 

The following is (part of) Theorem 2.4 in [KL89]. 

Theorem 7.2.3. 

1. Let (B, C) be an associated, pair of A, with 

R J 

A    -L    B and        C    -L    A , -«  -<=  
/ 5 

where I and J are the inclusions. Then 

(a) each of B and C is uniquely determined by the other, since we 
have C = B1T and B = CT±; 

(b) the functors SI: B —> C and RJ: C —>■ B are mutually inverse 
equivalences; 

(c) B is an essential localization and C is an essential colocalization. 

2. Moreover, every localization 3 of a category A forms part of an asso- 
ciated pair (B, C); and if U: B —> A is any left adjoint of the reflector 
R: A —Y B, we can describe C = BXT alternatively as the full replete 
image of U. 
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For the proof of the theorem, which uses (1) that the counit of the 
adjunction R H I is iso since I is full and faithful and (2) that the unit of 
the adjunction J -\ S is iso since J is full and faithful, see [KL89]. Here we 
just mention that in item (lc), the left adjoint to R is JSI and the right 
adjoint to S is IRJ. Thus given an associated pair (B, C) of A, we have the 
following situation: 

J -iS^ IRJ, 

JSI-\R-\ I, 
SIRJ^id, 

RJSI^id, (',4) 

J, I full and faithful, 

IRJ, JSI full and faithful. 

Note that in (7.3), the pair (Shj£,Jr) is an associated pair of £. Moreover, 
by item (la) in Theorem 7.2.3 and by Proposition 7.2.2 we have that T = 
(Shj£) = £>T, where V is the class of all morphisms inverted by a. Thus, 
comparing (7.4) with the situation in (7.3), we see that from just knowing 
that (Shj£,Jr) is an associated pair, everything in (7.3) follows, except that 
A (and thus AH) is lex. 

Recall that our goal is to axiomatize when a topos £ is local over another 
topos T, as in (7.2). By the preceding discussion it is now clear that it 
suffices to axiomatize the situation in (7.3) and that, moreover, it suffices to 
show that 

(Shj£, T) is an associated pair of £ and A is lex. (7.5) 

(To be pedantic, by showing (7.5), we really show that £ is local over the 
replete image of T along A in £, see Convention 7.2.1, but from this it, of 
course, follows that £ is local over T since T is equivalent to its full replete 
image along A in £.) 

We already know how to describe Shj£ by means of axioms on £, namely 
by a Lawvere-Tierney topology j. Also note that Shj£ is always a reflective 
subcategory of £. As explained above, T = Vr, where V is the class of 
morphisms inverted by a. Hence, given a topology j such that T ~ Shj£, 
to show (7.5), it suffices to show that 

V    is a coreflective subcategory of £ and the inclusion VTc *~£ is lex. 

(7.6) 

This is the approach we shall take. We shall assume given a topos £ with 
a topology j and then impose further axioms on £ and j allowing us to 
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prove (7.6). Let us emphasize that VT is completely well-defined given just 
£ and j — VT is the full subcategory of coorthogonal objects to the class 
of all morphisms inverted by the associated sheaf functor a, which we, of 
course, know exists given £ and j. 

7.3    Axiomatization 

For the remainder of this section, let £ be a topos and j a Lawvere-Tierney 
topology on £. We write Shj£ for the full subcategory of sheaves with inclu- 
sion i and associated sheaf functor a. Let Vj be the class of all morphisms 
inverted by a and define D7£ to be Vj, the full subcategory of coorthogonal 
objects to Vj. We refer to the objects in Dj£ as the discrete objects and 
to Dj£ as the category of discrete objects.2 

Remark 7.3.1. As yet, we do not have a very satisfactory internal (in the 
internal logic of £) definition of discrete object. The problem is that the 
definition above involves quantification over all objects of the topos and 
thus it is not straightforward to internalize it. (Of course, in the end, for 
a topos satisfying the axioms, we can say that an object is discrete if it is 
isomorphic to it's own associated discrete object, which can be found in the 
internal logic, but that is not very illuminating.) 

Lemma 7.3.2.  The category T>j£ has finite colimits and the inclusion 

preserves them. 

Proof. Because discrete objects are coorthogonal to morphisms inverted by 
a and they only occur on the left in the definition of coorthogonal. In more 
detail, suppose e: X ->■ Y is inverted by a and suppose (C;)t(Ejr is a finite 

2Regarding the choice of terminology: We call the objects in Dj£ "discrete" by analogy 
to the topological examples, as mentioned in Section 7.2. We would have liked to call 
the objects "cosheaves" since they are exactly the objects which are coorthogonal to 
the morphisms inverted by a and sheaves are the objects which are orthogonal to the 
morphisms inverted by a. However, "cosheaf" has already been used to describe something 
else, namely a sheaf valued in an opposite category [Bun95, Ber91]. Of course, "discrete" 
has also been used for other concepts (e.g., in the theory of realizability [HRR90]), but 
it seems nevertheless more innocuous to use the term "discrete" here as well. Do note, 
however, that in [HRR90] discrete is used to describe an orthogonal object, whereas here 
is it used to describe a coorthogonal object. 
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diagram of discrete objects. Then 

Horn*(Ihn. C,-, Y) 2 Um (Homf (Cf-, Y)) 
= bm(Homc(a-,A')) 
^Homf(ljinC,-,A-), 

as required. □ 

Definition jT.3.3. Let j be a Lawvere-Tierney topology in a topos £ and 
write V" H-> V for the associated closure operation on subobjects V -+ X. 
We say j is principal if, for all A' € £, the closure operation on Sub (A) 
has a left adjoint U i-» U°, called interior, that is, 

c/° < V <=*  U < V       in Sub (A). 

Remark 7.3.4. The interior operation is not assumed to commute with 
pullback. It follows (e.g., by the fact that externalization of internal cat- 
egories is a locally full and faithful 2-functor, see [Jac99]) that in general 
the interior operation is not induced by an internal map on the subobject 
classifier Q, in the topos £. 

Lemma 7.3.5. A topology j in a topos £ is principal iff, for all X e £, 
there exists a least dense subobject U\ of X. 

Proof. Suppose j is principal. _Let A € £ and let Ux = A0. By the unit of 
the adjunction, we have X < X° in Sub (A), so Ux = X and Ux is dense. 
Suppose V £ Sub (A) is dense. Then A < V, so by adjointness Ux < V, as 
required. 

For the other direction, suppose Ux is the least dense subobject of A" <E £. 
Write_A° for Ux- To show the required adjunction it suffices to show (1) 
that V° < V and (2) that V° > V (from which we get the counit and the 
unit). Write V <d X to denote that V is a dense subobject of A. 

For (1), note that 

V <   V        always true 

=>■     V   < V since V   is least dense in V. 

For (2), note that 

V° <d V        by definition 

=»       V < V°        by density (in fact, V° = V). 

This completes the proof of the lemma. □ 
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Suppose given a topos £ with a principal topology j. Then by the lemma, 
for all A" G £ there exists a least dense subobject Ux in Sub(X). We now 
show that the operation A' i->- C^Y extends to a functor on £. To this end, 
suppose /: X ->■ F and consider the following diagram 

where the right hand square is a pullback. Now note that, since j-closure 

commutes with pullback, we have that f*{Uy) = f*(W) = f*Y = A, so 
f*(UY) is dense in A", and thus Ux < t{Uy) in Sub(A). Hence there is 
an arrow Ux -> f*(Uy) as shown in the diagram above. Letting U(f) be 
the composite arrow across the top in the diagram above, we clearly get a 

functor U: £—»■£. 
We now show that functor U is idempotent. Write V <d X to denote 

that V is a dense subobject of X. By definition, U(U(X)) <d U(X) and 
U{X) <d A, from which it follows3 that U(U{X)) <d X. Hence U(U(X)) > 
U{X) since U{X) is the least dense subobject in A. Thus U(U(X)) = U{X) 

and U is idempotent. 
We write X *-¥ X°: £ —> £ for the functor U. We refer to this functor 

as the interior functor. (Note that this notation and terminology is in 
accordance with Definition 7.3.3.) 

Remark 7.3.6. Expressed using the internal logic of £, a Lawvere-Tierney 
topology j: Q —> Q in £ is principal if, for each type A, there is an atomic 
predicate Ux: X -> Q satisfying the following axiom and rule (the rule is a 
scheme, for any predicate <p: X —>• Q on A): 

dense 
\-Vx:X.j(Ux(x)) 

\-Vx:X.j(<p(x)) 
least dense 

hVx:X. Ux{x) D (p(x) 

Using the atomic predicates, the interior functor A M- A0 can be defined 
asl4{ x: X | Ux } (where { x: A | Ux} of course denotes the subset 

3In a topos with a Lawvere-Tierney topology j, we always have that if U is a dense 
subobject. of V and V is a dense subobject of W, then U is a dense subobject of W, see, 
e.g., [Jac99, Exercise 5.6.2(iii)]. 
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type of A' given by the predicate Ux). This defines a functor because if 
/: A" ->■ Y, then V.r: X. Ux(x) D Uy(f(x)), because by the least-dense rule 
it suffices to show that V.r: A. j(Uy(f{x)) is valid in £, but this holds since 
by the density axiom, Vy: Y. j{Uy{y)). Formally, f° is thus Xx. \(f(o{x))), 
where i and o are the injections and projections associated with the subset 
types. We shall leave out those injections and projections in the following, 
when giving further examples of reasoning using the internal language. 

Lemma 7.3.7. The interior functor X i-> A"0: £ -± £ preserves monomor- 
phisms. 

Proof. For a mono m: X ^>Y, we get the following diagram in £ 

X > > Y 

A0 > Y° 
m° 

from which it follows that m° is monic (since postcomposing with A'0 ^-*.A' 
gives a monic). rj 

For future use, we record the following easy corollary of Lemma 7.3.5. 

Corollary 7.3.8. Let £ be a topos with a principal topology j.   Then we 
have that, for all X £ £, for all V e Sub (A), 

W=V    and   V° = V°        mSub(A). 

The following lemma says that interior commutes with taking images 
(existential quantification). For /: X ->■ 1' in £ we write 3f for the left 
adjoint to the pullback functor /*: Sub(y) ->• Sub (A). 

Lemma 7.3.9. Let £ be a topos with a principal topology j. Let X,Y G £, 
V e Sub (A), andf:X->Y in £. Then 3j(V°) £ (3/V"°). 

Proof. Because it holds for the right adjoints, f*(V) = (J*V) [MM92].     D 

Remark 7.3.10. We rephrase the above lemma using the internal language 
of £. Let /: A -»• Y in £ and let Z = { y: Y \ 3x: X. f(x) =Y y}. Then 

I- Vy: Z. Uz(y) DC 3x : A. f(x) =Y y A Ux(x) (7.7) 

is valid in £. 
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Lemma 7.3.11. Let £ be a topos with a principal topology j. The interior 
functor X H-> A"°: £ —> £ preserves epis. 

Proof. Let /: A" -» Y be an epi and let m: 1° >-* A' be the interior of X. 
Since / is epic, the image Im(/) of / equals Y. By Lemma 7.3.9, we get 
that Im(/m) = 3/(A°) = (3fX)° = Im(/)° = 1'°. Write 

A0 —^ Im(/m) >-^-». y 

for the image factorization of fin. Thus there is an epic e: 1° -» Im(/m) = 
Y° and it just remains to verify that this epic indeed is f°. To this end, 
consider the diagram defining f° = hg: 

X° ^-+ f*(Y°) -±*~Y°= Im(/?n) 
v v 

X—^Y. 

Now ne = fm = nhg, so e = hg = /° since n is monic, completing the proof 
of the lemma. □ 

Remark 7.3.12. The above lemma can also easily be proved in the internal 
language: Suppose /: X —> Y is epi, i.e., Vy: Y. 3a;: X. f{x) = y. We are 
to show that 

Vy:{y:Y\UY(y)}. 3x: {x: X \Ux(x)}. f(x) = y. 

It suffices to show that 

Vy: Y. UY (y) D 3x : X. f{x) = yAUx (x). (7.8) 

But, letting Z' = Im(/) we have that Z' = Y, as / is epi, so (7.8) is 
equivalent to 

Vy: Z'. Uz.{y) D 3a: X. f(x) = yAUx(x), 

which holds by Remark 7.3.10. 

Definition 7.3.13. Let £ be a topos with a principal topology j. We then 
say that X e £ is open if A'0 = A. 
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Remark 7.3.14. Phrased using the internal language, an object X is open 
if and only if Va:: A". Ux{x) holds. The reader is warned against confusing 
this definition of open with the topological notion of an open set (in the 
same way as one should not confuse the closure operation associated with a 
Lawvere-Tierney topology with topological closure [Joh77, Page 78]). 

In the following development the open objects play a role similar to the role 
separated objects play for sheaves. Indeed, just like every sheaf is separated, 
we have that every discrete object is open: 

Lemma 7.3.15. Let £ be a topos with a principal topology j. Then every 
discrete object C £ Bj£ is open. 

Proof. Since ra: C° ;—> C is dense, we have that a(m) is iso (again us- 
ing [Joh77, Proposition 3.42]). Thus, since C is discrete, there is a unique 
lift of the identity across m as in 

C° 
T    * Y id  / 
/ 

/ V 

id 

from which we see that C = C°. D 

We have the following alternative characterization of openness. 

Lemma 7.3.16. Let £ be a topos with a principal topology j. Let X £ £ 
and write Ax : X >-+ X X X for the diagonal. Then X is open if and only 
ifAx° = Ax m Sub (Ax A). 

Proof. Consider the diagram 

A°> >X 

Ax0 X      / Ax 

Ax A. 

Now A is open iff A0 ^ A iff A*0 = Ax in Sub (A x A).   (The point is 
just that the domain of Ax is X.) □ 

Lemma 7.3.17. Let £ be a topos with a principal topology j. Then a quo- 
tient of an open object is open. 
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Proof. Suppose X is open and that e: X -» 1' is a quotient of X. Then by 
Lemma 7.3.9 and using the assumption that X = A"0 we have that 

Y = Im(e) = 3eA = 3e{X°) £ (3eA)° 3 (3e(A°))°, 

so 3e(A~°) is open, so Y is open. D 

Remark 7.3.18. In the internal language the argument goes as follows. 
Suppose X is open and that e: A" -» Y is a quotient map. Since X is open, 
i.e., V.T. Ux(x), and e is epic, we have \/y: Y. 3x: X. f(x): y A Ux(x). By 
Remark 7.3.10 and using that e is epic so that the image of / equals Y, 
we have that Vy: 1'. Uy(y) X 3x: X. f(x) = y A Ux(x). Combining the 
properties we then get that Vy: Y. Uy(y), so Y is open. 

Definition 7.3.19. Let £ be a topos with a principal topology j. We define 
Oj£ to be the full subcategory of £ of open objects. 

Given a topos £ with a topology j, the category of separated objects is a 
reflective subcategory of £. Analogously, we here find that (for a principal 
topology) the category of open objects is a coreflective subcategory of £. 

Lemma 7.3.20. Let £ be a topos with a principal topology j. Then Oj£ is 
a coreflective subcategory of £. 

Proof. The functor A (->■ A'0 is right adjoint to the inclusion of Oj£ into 
£. □ 

As mentioned before, given a topos £ with topology j, an object A is a sheaf 
iff A is orthogonal to the class of all morphisms inverted by the associated 
sheaf functor a. Recall that one does not need to consider orthogonality with 
respect to all morphisms inverted by a, but can restrict attention to dense 
monos—indeed, the usual definition of a sheaf just requires orthogonality 
with respect to dense monos [MM92]. We shall now show that also in the 
case of discrete objects, we need not require coorthogonality with respect to 
all morphisms inverted by a but just with respect to a smaller class of what 
we shall call coden.se epis. 

Definition 7.3.21. Let £ be a topos with a principal topology j and let 
e: A -» Y be an epi. Write Ax «Ixl for the diagonal and write Ke for 
the kernel of e, viewed as a subobject of A X A'. We say that e is codense 
if Ke° = Ax° in Sub(Ax A). 
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Lemma 7.3.22. Let S be a topos with a principal topology j and. write a 
for the associated sheaf functor. Then an epi e: X -» Y is codense iff a{e) 
is iso. 

Proof. Suppose that a(e) is iso. Consider the kernel pair of e 

k 

as a subobject of X X A' 

Ke =fc X -J^ Y. 
y 

Ae> *-A' x A'. 

We are to show that Ke° = AA
C in Sub(A x A). We immediately have that 

A"e > A.Y because the kernel pair of a morphism is always an equivalence 
relation. Hence, by functoriality of interior, A"e° > A.Y°. It remains to 
show that Ke° < Ax°- By adjointness and Corollary 7.3.8 this is equivalent 
to A'e < Ax° = Ax. But A'e < A"e, so it suffices to show that Ä7 < 
Ax- Recall [MM92, Corollary 8, Section V.4, Page 233] that a induces an 
isomorphism ClSubj(E) ^ Subsh^aE1) between j-closed subobjects of E 
and subsheaves of a A". Hence it suffices to show that 

a(Ae) < a(Ax) in Subs^-f (a A X a A). 

Now since a is lex, a preserves kernel pairs, so 

a/(e = Äae=^aI^>ay. 

is a kernel pair. But ae is iso by assumption, hence monic, so a A'e = A'ae = 
AaA', so we have the required. 

For the other direction, suppose e: A -» 1" is a codense epi. We are 
to show that ae is iso. Since a as a left adjoint preserves epis, ae is epic, 
so it suffices to show that ae is monic. Let Ke be the kernel of e viewed 
as a subobject oflxl. Since e is codense we get the following series of 
implications 

A"e° = AA° by definition 

A'e = A_Y by Corollary 7.3.8 

A'ae = a A"e = a(AA) = AaX    (*) 
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where the implication (*) follows since a is lex and 

ClSubtc(£) = Subside (a £), 

see above. Since the kernel of ae is the diagonal, we conclude that ae is 
monic, completing the proof of the proposition. D 

Remark 7.3.23. Recall [Joh77, Definition 3.41] that a morphism f: X -> 

Y is almost monic if the diagonal Ax ■ X w X X X is dense in the 
kernel of /. Moreover, for an epimorphism e, the morphism a(e) is iso 
iff e is is almost monic [Joh77, Corollary 3.43]. It thus follows immedi- 
ately by the above lemma that a,codense epi is an epi which is almost 
monic. In the internal logic, a morphism e: X —> Y is almost monic iff 
Vx,x': X. e(x) = e(x') D j(x = x') is valid (this description follows from 
the fact that e is almost monic iff e is internally injective in the fibration 
of j-closed subobjects [Jac99, Page 357-358]; using the description of the 
closed subobject fibration in loc. cit. one arrives at the here given description 

in terms of the internal logic of £). 

Remark 7.3.24. We note that just like the pullback of a dense mono is 
again a dense mono, it is easy to see, using the previous lemma, that the 
pushout of a codense epi is again a codense epi. 

Now follows the promised proposition which allows to determine whether an 
object is discrete just by testing for coorthogonality with respect to codense 
epis. 

Proposition 7.3.25. Let £ be a topos with a principal topology j. Then C 
is discrete if and only if C is coorthogonal to the class all codense epis in £. 

To prove the proposition we shall make use of the following lemma. 

Lemma 7.3.26. Let £ be a topos with a principal topology j. Suppose C G £ 
and that C is coorthogonal to the class all codense epis in £. Then, for all 
dense subobjects m:Y >—*■ X and all morphisms f': C —>• X, there exists a 
unique f: C —¥Y such that mf = /, as in 

Y 
f    *Y 

c'-^x 
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Proof. Let C, m: Y ^ X, and /: C -» A" be as in the lemma.  Consider 
the following diagrams 

/' 

c- ->A" 

W 

aY 
v 

a A' 

i u     a v 

YY 

&W 

f 

where w, i; is the cokernel pair of m and e is the coequalizer of w, v. Since a 
is a left adjoint, it preserves cokernel pairs and coequalizers, so aw, au is the 
cokernel pair of a???., which is an iso by assumption that m, is dense. Hence 
aw = av. Therefore ae, the coequalizers of aw,ai> is an iso and thus, by 
Lemma 7.3.22 e is codense. Since euf = evf: C -> P and since C T e by 
assumption, we get that uf = vf by uniqueness. Hence / factors uniquely 
through the equalizer of u, v. But m is the equalizer of u, v (as every mono 
in a topos is the equalizer of its cokernel pair, see [Joh77, 1.28]), so / factors 
uniquely through m via an /' as shown in the diagram above. D 

Proof of Proposition 7.3.25. We only need to show the right-to-left implica- 
tion; the other is trivial by Lemma 7.3.22. Suppose C G S and that C T e 
for all codense epis e. We are to show that C T h for all morphisms h 
such that a(h) is iso. So suppose h: X ->• Y is such that a(h) is iso and let 
/: C —> Y be arbitrary. Consider the following diagrams 

a A' 

al ah, 

ay, 

where me is the image factorization of h and the diagram on the right is a 
applied to this image factorization. Since a preserves image factorizations 
and a h is iso by assumption, we have that a m is iso and that a e is iso. Hence 
m is dense and, by Lemma 7.3.22, e is codense. Thus by Lemma 7.3.26, there 
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exists a unique /': C -> / such that mf = /. By assumption C T e, so 
there exists a unique /": C ->• A' such that ef" = /'. The morphism /" is 
the required unique morphism showing that C T h. □ 

We now define an operation, called exterior, on quotients, which one can 
think of as a dual operation to the traditional closure operation on subob- 
jects. 

Definition 7.3.27. Let £ be a topos with a principal topology j. For an 
epi e: X -» Y, we define the exterior of e, written e: X -» Y, to be the 
coequalizer of the interior A'e° of the kernel pair Ke of e. 

Expressed in a diagram the definition looks like: 

Ke      7 _     Y= CoEq(km, k'm) 
I >i 

^'^A- A
1 (7-9) Aim /v      \ I 

A'e°   
K m y 

By the universal property of the coequalizer, since ekm = ek'm, there is a 
unique map /J: V —)• Y such that /?.e = e, as shown in the diagram. Since e 
is epic, h is also epic. 

Lemma 7.3.28. Referring to the diagram (7.9) above, the epi h is codense. 

Proof. By Lemma 7.3.22 it suffices to show that ah is iso. Apply a to the 
diagram (7.9). Since m: Ke° >—> Ke is dense, a(m) is iso. Hence, since a 
preserves kernel pairs and coequalizers, a h is iso. D 

Clearly, the exterior operation ei4?on epis e: A -» Y induces a well- 
defined operation on quotients of A. By definition of the ordering of quo- 
tients of A' [AHS90, Page 113], the quotient represented by eis greater than 
the quotient represented by e. In fact, it can easily be verified that the exte- 
rior operation induces a functor -: Quot(A) ->■ Quot(A') on the quotients 
of A. 

Lemma 7.3.29. Let £ be a topos with a principal topology j. For any 
X e £, the exterior functor Quot(A) —>■ Quot(A') is idempotent. 



156 An Elementary Axiomatization of Local Maps of Toposes 

Proof. Consider the following diagram 

TO 2 

m\ 
where Ke       IX is the kernel of e; e is the coequalizer of m1b,m2b; and 

"i 

Ke       > X is the kernel of e. By the universal property of this kernel pair, 

there exists a unique c: Ke° -> A> such that mxb = nxc and m2b = n2c. 
Now let a: K~ :—> A> be the interior and let d = c° as shown in the diagram. 
Since interior is idempotent, Ke°° = A'e°, and the top left square commutes. 
Let e be the coequalizer of nio^n^a. Then e also coequalizes m1&,??}2& so 

there exists a unique d: Y -> y, proving that Y > y in Quot(X).  Since 

we already have that Y > Y, we conclude that Y = Y in Quot(X), as 
required. rj 

Recall that for a dense subobject X y-+ Y, the closure X of X is Y. We 
have a similar property for codense epis and the exterior operation: 

Lemma 7.3.30. Let £ be a topos with a principal topology j. For any 
quotient e: X -» Y for which e is codense, the exterior Y of Y is equal to 
X, as quotients of X. 

Proof. Consider the diagram (7.9). Since e is codense, wejiave by definition 
that A'e° = A A-

0
 as subobjects of Sub (A' X X). Hence Y is isomorphic to 

the coequalizer of the diagonal and thus isomorphic to X. D 

By Lemmas 7.3.28 and 7.3.30 it follows that if e: X -» Y is aquotient, then 
theexterior of the induced quotient h: Y -» Y is equal to Y (as quotients 
of n. 
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We can now finally state some conditions under which we can prove 
that the category of discrete objects is coreflective in the ambient topos £. 
For simplicity, and because its an important example, we first consider the 
axiomatization of localic local maps in Subsection 7.3.1. In the following 
Subsection 7.3.2 we consider the axiomatization of arbitrary (bounded) lo- 
cal maps. See [Joh77, Joh81] for more on bounded and localic geometric 
morphisms. One may think of the localic and boundedness conditions as 
size-conditions, expressing that £ is generated over T)j£, in the sense that £ 
is the category Devalued sheaves on an internal site in Dj£. 

7.3.1     Axioms for Localic Local Maps 

For £ an elementary topos with a topology j we suggest the following ax- 
ioms for localic local maps. 

Axiom 1 j is principal. 

Axiom 2 For all X G £, there exists a discrete object C and a diagram 

5> ^C 

X 

in £, presenting X as a subquotient of C. 

Axiom 3 For all discrete C G £, if X ^ C is open, then X is also discrete. 

Axiom 4 For all discrete C, C £ £, C X C is discrete. 

Completeness 

Theorem 7.3.31. Let £ be a topos with a topology j and suppose that £ and 
j satisfy Axioms 1-4 for localic local maps. Then the category of discrete 
objects Dj£ is coreflective in £. 

Proof. We show how to construct an associated discrete object for any object 
X e £. By Axiom 2, we have a diagram 

X 
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in £ presenting A' as a subquotient of a discrete object Cx 
the following diagram 

Now consider 

Ac 

sc 

-»- A"0 >- 

■C 

X 

Since interior preserves epimorphisms by Lemma 7.3.11, e°: S° ->• A'0 is 
epic. The exterior A"0 of the interior A"0 of X is obtained in the standard 
way, as the coequalizer of the interior Ke»° of the kernel pair A> of e°. By 
Axiom 3^ S° is discrete and thus also A>° is discrete by Axioms 3 and 4. 
Hence A'° is obtained as the coequalizer 

^5° *" A'° 

of a diagram of jdiscrete objects and thus, by Lemma 7.3.2, X° is discrete. 
We claim that A'0 -» A'0 >-» X is couniversal among arrows from discrete 
objects into A, thus establishing the existence of a right adjoint to the 
inclusion Dj£

<: *£. Indeed, let C be any discrete object and let /: C ->■ A" 
be arbitrary. Consider the following diagram 

Since the interior functor -°: £ -> Oj£ is right adjoint to the inclusion of 
open objects into £ by Lemma 7.3.20, there is a unique morphism /' making 
the right triangle commute. Then since h is a codense epi by Lemma 7.3.28 
and C is discrete, we have by Proposition 7.3.25 that C T h, so there exists 
a unique /" making the left triangle commute. This shows the required 
couniversality, completing the proof of the theorem. D 

Corollary 7.3.32. Let £ be a topos with a topology j and suppose that 
£ and j satisfy Axioms 1~4 for localic local maps. Then the category of 
discrete objects Dj£ is equivalent to Shj£ and the associated sheaf functor 
a: £ —> Shj£ has a lefl adjoint. 
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Proof. By Theorem 7.3.31 and the discussion in Section 7.2. □ 

Theorem 7.3.33. Let £ be a topos with a topology j and suppose that £ and 
j satisfy Axioms 1~4 for localic local maps.  Then the inclusion Dj£c >£ 
is left exact and finite limits in Dj£ are computed as in £. 

To prove the theorem it is useful to name the inclusion functor and the 
coreflector, as follows: 

L 
D;£~T*£, 

-«=- 
R 

where 

L-\R       and        RoL^id. 

Thus L is the inclusion of discrete objects and R is the associated discrete 
functor. Recall that R is a known to have right adjoint, by Corollary 7.3.32. 

The proof of the theorem proceeds by a series of lemmas. The main tool 
is the following lemma, which seems to be folklore (a related argument is 
in [Fre72, 2.61]). 

Lemma 7.3.34. Let £ and T be toposes and suppose the functor F: £ —> T 
preserves finite products, monomorphisms, and pushouts. Then F is left 
exact. 

By this lemma and the following (which, of course, is stated under the 
assumptions of Theorem 7.3.33), 

Lemma 7.3.35. The functor LR: £ —> £ preserves finite products, mono- 
morphisms, and all colimits. 

we can then conclude that 

Corollary 7.3.36.  The functor LR: £ —> £ is left exact. 

Using this fact, we can complete the proof of Theorem 7.3.33: 

Lemma 7.3.37. The functor L: Dj£ —¥ £ is left exact and finite limits in 
Dj£ are computed as in £. 

Let us now proceed with the proofs of the above mentioned lemmas. 
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Proof of Lemma 7.3.34. We need to show that F preserves equalizers, for 
which we use the fact that 

E- ■*X 

s 
Y 

is an equalizer if and only if 

E 
J 

X 

+ X 

(1-/) 

<i,s> 

*■ X x Y 

is a pullback. The advantage of the latter formulation is that it consists 
entirely of monomorphisms. Hence it suffices to show that F preserves 
pullbacks of monomorphisms. Let the outer square below be such a pullback 

where P is the pushout, P = M+LN. (Recall that, in a topos, the pushout 
of a monic is monic, so M >-> P and N >-> P are both monic.) Note that 
L = M DX N. In fact, P is the union, P = MUX N. This can be shown 
either categorically or, perhaps more easily, in the internal logic. (Internally 
speaking, P is the disjoint union of the two subsets M and iV of X with two 
elements in the disjoint union being equal iff they come from the intersection 
of M and N. Thus P is the union of M and N.) Hence the canonical map 
c: P —»■ X is monic. 

By applying F to the inner diagram above we get a pushout of monies, 
since F preserves pushouts and monies. A pushout of monies is a pullback 
in a topos [Joh77]. Since the connecting map Fc is still monic, the outer 
square is then also a pullback. □ 

Proof of Lemma 7.3.35. We are to show that LR: £ ->■ £ preserves prod- 
ucts, monos, and all colimits. It preserves all colimits since both L and R 
are left adjoints. 
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To show that LR preserves the terminal object 1, it suffices to show that 
1 is discrete. By Axiom 2, we can present 1 as a subquotient of a discrete 
object C, 

S- 

1. 

■*C 

Since S -» 1 is epic, it follows that the unique morphism from C to 1 is 
also epic. Hence 1 is a quotient of a discrete object, and thus discrete by 
Lemma 7.3.17. 

Binary products are preserved by Axiom 4. 
It remains to show that LR preserves monos. Thus let m: M >-* AT be 

a monomorphism in S. For clarity, let us denote the composite functor LR 
by d. We write e: d =$> id for the counit of the adjunction L H R. Consider 
the following diagram 

dM- 

where the inner square is a pullback. The outer square commutes by defini- 
tion of dm. Hence by the universal property of the pullback, there exists a 
unique morphism u: dM —> m*dN such that 

bu = 6M        and        cu = dm,. 

Since (m*dN)° is an open subobject of a discrete object dN, (m*dN)° is 
discrete by Axiom 3. Hence by couniversality of CM, there exists a unique 
morphism v: (m*dN)° —» dM such that 

ba. 

We now claim that 

eMv 

vu° = 1 
o 1 

U   V = 1 

(7.10) 

(7.11) 
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that is, that dM is isomorphic to (m*dN)°, from which it easily follows that 
dm = cent0 is monic, as required. Equation (7.10) follows from couniversality 
of eM (eMvu = bau0 = bit = eM, so vu = 1). To see that equation (7.11) 
holds, note that both for x = a and for x = au°v, we have that mbx = e^cx. 
Therefore, by uniqueness of the mediating arrow to the pullback, we get that 

u v since a is monic. a = au°v, from which it follows that 1 

Proof of Corollary 7.3.36. By Lemmas 7.3.35 and 7.3.34, the functor 

D 

is left exact. D 

Proof of Lemma 7.3.37. We are to show that L: D,-£ -» £ is left exact. 
L preserves finite products because the terminal object 1 in £ discrete 

and also terminal in Bj£ and the product (formed in £.) of two discrete 
objects X and Y is again discrete by Axiom 4. 

It remains to show that L preserves equalizers. We first show that L 
preserves monos. 

So let 

x >—>y 

be a mono in Dj£. Apply functor L and form the image factorization of Lrn 
in £ to get 

LX^- 

Now apply functor R to get 

X>- 

Lm 
->LY 

■+Y 

Note that functor R preserves epis as a left adjoint and monos as right 
adjoint.  Hence the morphism RLX ->• RI is epic.   It is also monic (since 
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by postcomposing with RI ->• RLY = Y we get a mono m), so iso.  Thus 
ALA' = RI. 

Apply L again to get 

LX*- 
Lm 

LRLX 
LRLr, 

LY 

-*- Lßiy 

Li?/. 

Since LR is left exact by Corollary 7.3.36, LRI is the image factorization of 
Im, so Ii?7 >—* LRLY is monic, and hence I???, is monic. This completes 
the proof that L preserves monos. 

We now proceed to show that L preserves equalizers. Let 

/ 
X^- -*-y 

be an equalizer in Dj£. Apply L and form the equalizer E of Lf and Lg in 
£ 

Lf 
ZLZ 

Lg 

Apply the functor R to get 

x^- —^} 
/ 

r& C^ 
5 

/ 
1     i ' RLm 

' ' RLf 

,   RLX^- -»-Ä1 :y : E 

Rn 

RE 

RLg 
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Since m: X :—> Y is an equalizer, there exists a unique arrow u: RE -> A" 
such that Rn = m o u. Finally, apply L one more time to get 

Lm 

LRLr, 

LX > —  LY I LZ 
Lg 

LRLJ 

*■ LRLY ^ LRLZ 
LRLg 

Since LR is left exact by Corollary 7.3.36, LRn is the equalizer of Lf and 
Lg, so there is a unique arrow v: LX -» LRE, as shown in the diagram. It 
now suffices to show that 

voLu = l (7.12) 

Luov=l (7.13) 

because then LX = LRE and thus Lm: LX -> LY is an equalizer. For 
equation (7.12), note that 

LRn ovoLu = Lm o Lu = LRn 

from which we conclude that v o Lu = 1 since LRn is monic (since LR 
preserves monos by Corollary 7.3.36). For (7.13), note that 

Lm o Lu o v = LRn o v = L m 

from which we get that Lu o v = 1, since Lm is monic (because m is and 
because L preserves monos, as shown above). 

Thus L also preserves equalizers, and we have completed the proof of 
the lemma. □ 

We can now conclude that our axioms for localic local maps are complete 
in the sense that for a topos £ with a topology j satisfying the axioms for 
localic local maps we indeed do get a localic local map from £ to Bj£ ~ Shj£: 

Corollary 7.3.38. Let £ be a topos with a topology j and suppose that £ 
and j satisfy Axioms 1~4 for localic local maps. Then there is a localic local 
map from £ to Dj£ ~ Shj£. 

Proof. By Theorems 7.3.31, 7.3.33, and 7.2.3 (see the explanation after The- 
orem 7.2.3). □ 
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Soundness 

The following proposition tells us that if we have a local map of toposes 
then the associated topology is principal. 

Proposition 7.3.39. Let £ be a topos with topology j.   If the associated 

sheaf functor a: £ 

cipal. 

Shj£ has a left adjoint L, then the topology j is prin- 

Proof. By Lemma 7.3.5 it suffices to show that for every object A", there is a 
least dense subobject. Let e denote the counit of the adjunction L H a and let 
m: V >—* X be an arbitrary dense subobject of X. Then by [Joh77, Propo- 
sition 3.42], a(m): a(V") -> a (A') is an iso. Hence, also Ia(m): Xa(V") —>• 
L a(A) is an iso. Now, let Ux be the image of ex : L a(A') -» X and let Uy 
be the image of ey: X a(V) -> F and consider the following diagram 

Uv< 

L&V >Ia.Y 

Since m: F —y X is monic, the image Uy of €y is the same as the image of 
m o ey = ex o La(m) (the latter equality by naturality of e). Since ia(m) 
is iso, the image of ex ° La(m) is the image of ex, that is, Ux- In summa, 
Uy is isomorphic to Ux, as depicted in the diagram above. Hence Ux < V 
for any dense subobject V. It remains to show that Ux is in fact dense. To 
this end, note that 

af/i 

aLaA 

a(£x) 

aA 

is also an image factorization, as a preserves such (since a by assumption is 
both left and right adjoint). Moreover, by [MM92, Lemma 1, Section VII.4, 
Page 369], L is full and faithful since i is, so the unit r\: aL => id is iso. 
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Hence a(ex) is iso (since a(eA') o ?/aA = id) and thus we also have that 
aUx ^ a A' is iso. We conclude by [Joh77, Proposition 3.42] that Ux ^ A' 
is dense. [j 

The following theorem expresses that our axioms are sound. 

Theorem 7.3.40. Every locolic local map of toposes satisfies Axioms 1~4 
for localic local maps. 

Proof. Let £ and T be toposes with adjoint functors between them as in 
the situation 

AHTH V, A full and faithful and lex. 

Suppose further that £ is localic over T, i.e., that for all X <E £, there exists 
a C € T and a diagram of the form 

S- 

f 
X 

AC 

in £. Then by the discussion in Section 7.2, there is a topology j in £ 
such that T ~ Shj£ and T ~ Bj£. So it suffices to show that Axioms 1-4 
are satisfied. Axiom 1 holds by Proposition 7.3.39. Axiom 2 holds by the 
assumption that £ is localic over F, since the discrete objects are the replete 
image in £ of T along A. Axiom 4 holds since A is lex. For Axiom 3 let 
X )-> C be an arbitrary subobject of a discrete object C. Consider the 
following diagram in £ 

J{X°)>—^C^J{C°) 

Xc 

x^- *c, 

where J is the inclusion   Dj£c >£  of the discrete objects, and X i-» 

X°: £ -»■ Dj^T is the coreflector. Note that the top horizontal arrow in the 
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diagram above is monic because the coreflector as a right adjoint preserves 
monos and because the inclusion of discrete objects is lex by the assumption 
that the given map is local. The vertical arrows are the counits of the core- 
flection adjunction, so the diagram commutes by naturality. Hence e is also 
monic and thus iso, so A'0 = X°. Therefore, if X is open (i.e., X = A"0), 
then X° = X and A must be discrete. □ 

7.3.2    Axioms for Bounded Local Maps 

For £ an elementary topos with a topology j we consider the following 
axioms for bounded local maps. 

Axiom 1 j is principal. 

Axiom 2a There is an object G £ £ such that, for all A' 6 £, there exists 
a discrete object C and a diagram 

S >—*■ CxG 

X 

in £, presenting X as a subquotient of C X G. 

Axiom 2b There is a discrete object G' and a diagram 

G'—^G°>—>G 

in £. 

Axiom 3 For all discrete C G S, if A :—> C is open, then A is also discrete. 

Axiom 4 For all discrete C, C € E, C X C is discrete. 

Completeness 

Theorem 7.3.41. Let E be a topos with a topology j and suppose that £ 
and j satisfy Axioms 1, 2a, 2b, 3 and 4 for bounded local maps. Then the 
category of discrete objects Dj£ is coreflective in £. 

Proof. We show how to construct an associated discrete object for any object 
X £ E. Let G, G', and S be as in Axioms 2a and 2b. The construction of 
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the associated discrete object is contained in the following diagram: 

T°> ^T^—*CxG' 

S° >■ 5° ^-». C x G° 
v v 

S > > C x G 

X. 

The right-most vertical arrows are induced in the obvious way from the ar- 
rows G' -» G° >-^G given by Axiom 2b. The morphism /: S° -4 C X G° is 
obtained as follows. Applying the interior functor to the morphism S ^ C'x 
G gives a morphism 5° ^ (C X G)°, monic by Lemma 7.3.7. Moreover, ap- 

plying the interior functor to the product projections C^—C X G—^G 
gives morphisms 

C°^C^ (C x G)c 
■G°, 

where C° = C since C is discrete and thus open by Lemma 7.3.15. It follows 
that there is a unique morphism from (C X G)° to the product C X G°. 
Composing this morphism with the S° ^ (C X G)° gives the morphism / 
shown in the diagram. It can be verified that / then is monic. Object T 
is obtained as a pullback as shown. Since pulling back in a topos preserves 
epimorphisms, T -» 5° is epic. The morphism T° -» 5° is the interior 
functor applied to the epi T -» S°; it is epic since the interior functor 
preserves epis by Lemma 7.3.11. By Axiom 4, C X G" is discrete and thus, 
by Axiom 3, also T° is discrete. Finally, the epi S° -» X° is obtained 
by applying the interior functor to S -» X, and e is the composite epi 
T° -» 5° -» A'0. 

Now take the exterior of e to get A0. By the same argument as in the 
proof of Theorem 7.3.31, this is the associated discrete object of A. D 

Theorem 7.3.42. Let £ be a topos with a topology j and suppose that £ and 
j satisfy Axioms 1~4 for bounded local maps.  Then the inclusion D,£< ^£. 
is lex. 

Proof. As the proof of Theorem 7.3.33. D 
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Corollary 7.3.43. Let £ be a topos with a topology j and suppose that £ 

and j satisfy Axioms 1-Jt for bounded local maps. Then there is a bounded 

local map from £ to T)j£ ~ Shj£. 

Proof. By Theorems 7.3.41, 7.3.42, and 7.2.3 (see the explanation after The- 

orem 7.2.3). d 

Soundness 

Theorem 7.3.44. Every bounded local map of toposes satisfies the axioms 

for bounded local maps. 

Proof. The proof proceeds as the proof of Theorem 7.3.40. With notation 
as in that proof, Axiom 2b holds since the associated sheaf functor a has a 
left adjoint L and we have, by Proposition 7.3.39, a diagram of the form 

LaG »■ G° > *■ G 

in £. Since Shj£ ~ Dj£, we have that LaG is isomorphic to a discrete 
object, proving that Axiom 2b holds. Axiom 2a holds by the assumption 
that the given local map is bounded. Axioms 1,3, and 4 hold as in the proof 

of Theorem 7.3.40. □ 

7.4    More Properties of Open Objects 

Convention 7.4.1. For the remainder of this section we assume given a 
bounded local map /: £ -*■ T of toposes. Then there is a principal topology 
j in £ such that T ~ Shj£ and the associated sheaf functor a has a left 

adjoint L. 

Under the assumptions stated in the above convention we now draw some 

easy conclusions about the open objects. 

Corollary 7.4.2. Any open object in £ is a quotient of a discrete object. 

Proof. By Corollary 7.3.32 and the proof of Proposition 7.3.39, the interior 
A'0 of an object X is obtained as the image of the counit e \': L a X —y X of 

LHa: 

L a X *- A'0 >—»■ X. 

Thus, if X is open (i.e., X° = A), the image of ex is X and X is a quotient 

of La A. □ 
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Remark 7.4.3. Combining the above corollary with Lemma 7.3.15 and 
Lemma 7.3.17 we conclude that: The open objects of £ are exactly the quo- 
tients of the discrete objects in £. 

Proposition 7.4.4. The category of open objects Oj£ is closed under finite 
colimits in £. 

Proof. The initial object is discrete, hence open. By Corollary 7.4.2, any 

two open objects X and Y are both quotients of discrete objects, say C'x 

and Cy. Thus also the coproduct X + Y is a quotient of the discrete object 

Cx + Cy (Cx + Cy is discrete by Lemma 7.3.2) and hence X+ Y is open by 
Lemma 7.3.17. Finally, a coequalizer of a pair of morphisms between two 

open objects, each covered by a discrete object, is of course also covered by 
a discrete object, hence is open by Lemma 7.3.17. D 

Proposition 7.4.5. The interior functor X H-> X°: £ -» £ preserves pre- 
serves finite products. 

Proof. To show that the interior functor preserves the terminal object 1, it 
suffices to show that 1 is open. But we already know that 1 is discrete and 
hence it is also open. 

Now for binary products, let X, Y be objects in £. Consider the following 
diagram in £ 

LaX -< LaX x LaY > L a Y 

ei 
f 

x° ~* x° x y° > Y 
Y Y V 

mi 

e2 

o 

m2 

X < X xY *- Y, 

where m^e,- are the image factorizations of the counits ex and ey of the 
coreflection L H a. The morphism e is ei X e2 and the morphism m is 
m: x m2, so e is epic and m is monic. Now since a preserves products, 
a(X x Y) = aX x aV. By Axiom 4, L preserves binary products, so 
La{X x Y) £ LaX x LaY. Thus, (X x Y)°, the image factorization of 
the counit exXY, is isomorphic to the image factorization of ex X eY = me, 
that is, (X x Y)° ^X°x Y°, as required. Q 

Corollary 7.4.6. The category Oj£ of open objects has finite products and 
they are computed as in £ and thus preserved by the inclusion Oj£c >£. 
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Proof. The terminal object is open.    Let L denote the inclusion functor 
Ojoc ^£ and let R denote the right adjoint A" \-t X°, see Lemma 7.3.20. 
From the adjunction L H R is follows that the product A" XOjS Y of A", Y e 
OjS in Oj£ is R(LX X? LY), where Xs denotes the product in £. But 
R{LX x£ LY) - (A x£ Y)° = X° x 1'° = X x£Y by Proposition 7.4.5 and 
since X and Y are open. □ 

Proposition 7.4.7. Let f: C 
C and D in £ and suppose X >- 
the pullback of X along f, as in the diagram 

> D be a morphism between discrete objects 
D is an open subobject of D. Then f*(X), 

Y I 

c 

^x 
v 

D, 

is open. 

Proof By Axiom 3, X is discrete (as an open subobject as a discrete object). 
The discrete objects are closed under finite limits in £ by Theorem 7.3.42, 
and thus f*(X) is also discrete, and hence open by Lemma 7.3.15. D 



Chapter 8 

Logic and Local Maps of 
Toposes 

Suppose given a topos £ with a topology j satisfying the axioms for bounded 
local maps set out in the previous chapter. There results a local map of 
toposes 

with A the inclusion of the discrete objects and T the associated discrete 
object functor with right adjoint V. In this chapter we ask: What can 
we then say about the relationship between the internal logic of the topos 
of discrete objects Dj£ and the internal logic of £ itself ? In particular, 
we would like to know when the interpretation of a sentence with basic 
types and predicates interpreted in Dj£ agrees with the interpretation of 
the sentence in £. This way we can obtain information about £ in terms of 
Dj£. This approach is advantageous in situations where we have a better 
understanding of the topos of discrete objects than of the topos £ itself, for 
example, in the case where £ is the relative readability topos RT(^4,-Aj) 
and Bj£ is the standard readability topos RT(^tj). Our point of view is 
thus analogous to the point of view of Hyland who investigates when the 
logic of a sheaf subtopos (Set) agrees with the logic of a given topos (the 
effective topos) [Hyl82, Section 5]. 

In Section 8.1 we briefly recall the logic of sheaves and its relation to 
the logic of £. In Section 8.2 we then develop the logic of discrete objects. 

173 
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In more details, we define a fibration of open subobjects, prove that it is 
equivalent to the fibration of closed subobjects, and that the logic of Dj£ is 
obtained from the fibration of open subobjects by change-of-base along the 
inclusion of discrete objects. This is much like the logic of sheaves, which is 
obtained from the fibration of closed subobject by change-of-base along the 
inclusion of the sheaves. Thus we extend the adjoint-cylinder picture to the 
logics of sheaves and discrete objects. We prove that the interpretation of a 

certain class of stable formulas (encompassing geometric formulas, of course) 
is preserved by the inclusion of the discrete objects into £. In Section 8.3 we 
define a modal logic for local maps. We both describe the syntactic calculus 
and also its interpretation given any local map of toposes. The modality (J 
is interpreted by the interior operator and it satisfies the usual properties of 
the box operator from S4. The modal logic can be seen as a kind of internal 
logic for local maps (resp. local toposes over a fixed base topos) and it is 
useful to obtain more relationships between the logic of discrete objects and 
the logic of £. We give two sample applications in this direction. 

Much as the closure operation is important when relating the logic of 
sheaves to the logic of £, the interior operation is important, when relating 
the logic of the discrete objects to the logic of £. The closure operation 
is a logical operation in the logic of £, in the sense that it is a map on 
the subobject classifier Q of £ or, equivalently, it is a natural operation on 
subobjects which commutes with pullback. In logical terms, this means that 
the closure operation commutes with substitution (as one would expect of 
any well-behaved logical connective / operation). For the interior operation 
this is not the case, see Remark 7.3.4. This fact has two consequences: (1) 
when we describe the fibration of open subobjects in Section 8.2, substitution 
(reindexing) is defined in a slightly more subtle way than usual; and (2) 
when we consider the interior operator as a modal operator in our modal 
logic for local maps in Section 8.3, we restrict attention to a subcollection 
of types from £ satisfying that for predicates on these types interior does 
indeed commute with substitution. We remark that it is classical that there 
is a problem of noncommutativity of substitution with respect to modal 
operators, see [GM87] and the references therein. 

8.1    The Logic of Sheaves 

In this section we briefly recall how the logic of sheaves, i.e., the internal logic 
of the subobject fibration on Shj£, relate to the logic of £. The material 
presented in this section is standard; we follow [Jac99], see also [Hyl82, 
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MM92]. 

Proposition 8.1.1. Let j: Q -> Q be a Lawvere-Tierney topology in a topos 
£ and let Qj be the image ofj. Since closure commutes with pullback, we get 

ClSubj(S) 
a split fibration       J,        of closed subobjects. It is a higher-order fibration 

e 
with extensional entailment, in which: 

• Tj, Aj, Dj, and^j are as for ordinary subobjects. 

• Lj = -L, X Vj Y■= X V Y, 3j(X) = 3{X), and Eq^X) = Eq(A'), and 
thus-ij(X) = X DT. 

• true: 1 >—> Qj is a split generic object. 

ClSubj(f) 
We have here labelled the connectives etc. in       J,        with a subscript j. 

£ 

Hence closure (-) defines a fibred functor Sub {£) -> ClSubj(^) over S which 
preserves all this structure except the generic object. 

For the proof of the proposition, see, e.g., [Jac99, Proposition 5.6.6]. 
Suffice it here to recall that closure commutes with finite meets and that for 
subobjects X, Ye Sub (Y), 

XDY=XDY=XDY 

(Both equalities are not too difficult to show; the first can be found explicitly 
in [W1194, Proposition 9.11, Page 46], the second can be found in [Jac99, 
Proposition 5.6.6]. One can also see these equalities as an application of 
Freyd's theorem [FS90] that a full reflective subcategory is an exponential 
ideal if the reflector (in this case closure) preserves products.) Also, for 
X e C\Sub3(8)(I x ./), i.e., X closed, 

Vj: J. X = Vj: J. X. 

Let us write out explicitly what the above proposition says with regard 
to first-order logic. For all objects (types) I,J G £, all closed subobjects 
(predicates in the closed subobject fibration) X,Y £ ClSubj(7) and Z e 
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ClSubj(7 x ./), and morphisms (terms) x,x': 1 -> X 

(x =3 x') = x = x' 

T; = T 

A A, Y = A A Y 

Y 

= x 
AV, = A V Y 

A D3 Y = X D Y 

—1 

Z 
= XDT 

3jj:J. = 3j:J. Z 

Vjj:j. Z = Vj:J. Z 

ClSubj(5) Sub(f) 
Moreover, substitution in        4-       1S interpreted as it is in     J,    , i.e., by 

£ £ 
pullback. 

Recall that when I £ £ is a sheaf, a subobject X ^ I in £ is closed 
iff A' >-* J is a subobject in Sh?£. Therefore one can show the following 
proposition (see, e.g.,   [Jac99, 5.7.11] and [Joh77] for more details). 

Proposition 8.1.2.  There is a change-of-base situation 

Subßhjf) ►ClSub^f) 

Sh^c 

Propositions 8.1.1 and 8.1.2 taken together give us a translation of the 
first-order logic of Shj£ into the first-order logic of £. For (p first-order 
formula with basic types and basic predicates interpreted as sheaves, write 
Mshjf f°r the interpretation of <p in the subobject fibration on Shj£. If we 
view the interpretation of the basic types as objects of £ and the interpre- 
tation of the atomic predicates as closed subobjects on those objects in £, 
the interpretation {(pjj of <p in the closed subobject fibration equals [<y?]sh-£- 
Moreover, by Proposition 8.1.1, if ip is built up from atomic predicates and 
T, A, D, and V {i.e., ip is a negative formula), then {pjj equals {<p}, the 
interpretation of <p in logic of £. For more results of this nature, see [Hyl82]. 
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8.2    The Logic of Discrete Objects 

Recall from Chapter 7 that when I £ <f is a discrete object, a subobject 
X K-i- / is open iff X is discrete iff X >-> I is a subobject in Dj£. We will 
use this fact to get results, analogous to those for sheaves recalled in the 
previous section, relating the logic of the discrete objects to the logic of E. 

Definition 8.2.1. We define OpenSubj(£) to be the full subcategory of 
Sub(£) on the open subobjects. 

Proposition 8.2.2.  The codomain functor cod: OpenSub^)  —>■ £ is a 
OpenSubj(f) 

fibration J, with reindexing of X )—► J along u: I -> J given by 

u*(X)°, the interior of the pullback of X along u. 

Proof. Consider the following diagrams. 

h 

Here tp: X >—> J is an open subobject over J and u: I —v J is a map in the 
base category £. I X j A'0 is the interior of the pullback of X along u and 
ü: I X j X° —>■ Ä' is obtained as the interior functor applied to the morphism 
/ Xj X —>■ X (here we use that X is open, i.e., X = 1°). We claim that 
u is a cartesian lifting over u. Thus suppose that tp: Y >-+ # is an open 
subobject of // and that (ß, v) is a map from tp: Y H^ H to (f:. X >—)■ J in 
OpenSubj(o), i.e., 9?^ = u^>, see the diagram above. Suppose further that 
v factors as uw, for some w: H —$■ I, shown in the diagram. Then by the 
universal property of the pullback, there exists an h': Y —)■ I Xj X such 
that wip and <pm both factor through h'. Let h be the interior of h'. Then 

uh = g and WW = V 
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so (</,f): i> -> ip in OpenSub^) via factors via (h,w).  Moreover, (h,w) 
is the unique such over w since m is monic, completing the proof that u is 

OpenSubj(f) 
cartesian over u and thus that J, is a fibration. D 

Proposition 8.2.3.  77?.e interior operation and the closure operation estab- 
lish a fibred equivalence as in 

OpenSub^) ~ ClSxibj(£ 

Proof. Note first that by Corollary 7.3.8, 

1. for X w I an open subobject, 1° = A"° = X 

2. for X :—:■ I a closed subobject, X° = ~X = X 

Thus it only remains to show that closure and interior are fibred functors. 
Closure is fibred because, for any open X w J and any map u: I —> J 
in the base, (u*X°) = (u*X) = u*(X). Interior is fibred because, for any 
closed X ^ J and any map u: I -> J in the base, (u*X)° = (u*(X°))° (the 
> is obvious, for the other direction use adjointness: (u*X)° < (u*(X°))° 
iff u*X < u*(X°) iff u*X < u*X, which holds). D 

OpenSubj(iS) 

Proposition 8.2.4.  The fibration J, of open subobjects is a higher- 
£ 

order fibration with extensional entailment, in which: (we label the connec- 
OpenSubj(£) 

tive etc. in J, with a subscript o) 
c 

• ±o, V0, 30, Eq0 are as for ordinary subobjects. 

• T0_= T°; XA0Y = (XAY)°,_X D0 Y = (XDY)°,  (V0)/X = 
(V/X)°, and thus -.„(X) = (X D _L)°. 

• true: 1 M fi is a split generic object. 

Hence interior (-)0 defines a fibred functor Sub(£) -> OpenSub •(£) over £ 
which preserves all this structure, except the generic object. 
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Proof. The first-order structure is defined categorically and thus preserved 
along equivalences.  Hence we can use Proposition 8.2.3 to derive what the 

OpenSub^f) 
logical operations are in 4-        : Let I and J be objects of £, f: I -> J 

in €, and suppose X,Y are open subobjects of J. Then we have: 

• _L0 = _Lj° = _L   = JL° = -L since J_ is the initial object which is discrete 
and thus open. 

• For V0 we argue as follows. 

AV0Y = ÄV? Y° 

= X V Y 

= (XvF)° 
= X V Y°   see below 

= X V Y     by Proposition 7.4.4 

For the equation (A' V Y)   = X V Y° note that we clearly have that 
the > direction holds. For the other direction note that by adjointness 

(XVY)° < AVY° 

holds iff 

(A V Y) < X V Y (8.1) 

holds. But clearly A < A V Y and likewise Y < X V Y, and therefore 
(since V is the least upper bound operation) we have that (8.1) holds. 

• For 30 we argue as follows. 

(30)/A = {33)}X° 

= 3/A 

- PfX)° 
= 3/A      by Lemma 7.3.9 

= 3/A° 

= 3/A      since A is open 
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• Eq0 is a special case of 30 (since we show that we have left adjoints 3/ 
for all morphisms / in the base, not only the projections). 

• T0 = V = T°. 

• For A0 we argue as follows: 

X A0Y = (A'A,-y v 

= (A' A Y)° 

= (X A Y)° 

= (x A y)° 

• For Do we argue as follows: 

X Do Y = (X Dj Yy 

= (* D Y)° 
= (XA¥)°. 

• For V0 we argue as follows: 

(VO)/ä- = ((^yx)° 

= (V/Ä)°. 

It only remains to show that true: 1 M fi is a split generic object. Let 
X M / be an open subobject of I and let x: / ->■ fi be the characteristic 
map of A' in £, i.e., x is the unique map making the square below a pullback 
diagram. 

X° ^ X 

true 

Since 1 is open, the interior of X is isomorphic to X. Thus the reindexing 
OpenSubj(f) 

of true: 1 -> Ü along x in I        , that is, the interior of the pullback 
£ 

of 1 along x, is X itself. □ 
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Let us write out explicitly what the above proposition says with regard 
to first-order logic. For all objects (types) I,J G £, all open subobjects 
(predicates in the open subobject fibration) X,Y G OpenSubj(/) and Z G 
OpenSubj(7 X J), and morphisms (terms) x, x': 1 -> A' 

(x =o x') = (x = x') 

T0 = T° 

A A0 Y = (A AY)0 

±o = -L 

X V0 Y = XV Y 

X Do Y = (A D F)° 

^0X = (A D T)° 

30j:J. Z = 3j:J. Z 

V0j:J. Z=(Vj:J.Z)° 

OpenSuby(f) 
Moreover, substitution in 1 is interpreted as the interior of the 

£ 

pullback. 

Proposition 8.2.5.  There is a change-of-base situation 

Sub(D^) ^ OpenSub^) 

D^c ^£. 

Proof. For X ^ J an open subobject of a discrete object J. Then A itself 
is discrete, by Axiom 3 in Section 7.3.2. Moreover, since the discrete objects 
are closed under finite limits in £, the pullback u*(X) of X along a map 
u: I -* J between discrete objects is discrete and hence also open.   Thus 

OpenSub,(f) 

the reindexing of A along u in 4-        > namely u*(X)° is equal to (as 
£ 

subobjects of /) the reindexing of A in Sub(Dj£), namely u*(X). D 

Combining the above proposition with Proposition 8.1.2 we have the follow- 
ing picture, complementing the adjoint cylinder picture (where the discrete 
objects come in to £ on the left, the sheaves come in to £ on the right, and 
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the category of discrete objects is equivalent to the category of sheaves). 

Sub(Djp *- OpenSub^) _    -     __ C\Subj(£) < Sub(Sh,£) 
\. 0 S \  

JSh.-f 

Combining Propositions 8.2.5 and 8.2.4, we of course derive a translation 
of the internal logic of Dj£ into the logic of £. Since we are restricting 
attention to the discrete objects in the base, we can make some simplifi- 
cations compared to what we get directly from Proposition 8.2.4 (see also 
the explicit treatment after that proposition): Since open subobjects X and 
Y of a discrete object I are in fact discrete (by Axiom 3) and since the 
inclusion of discrete objects is left exact, A' A0 Y = (X A 1')° simplifies to 
X A0 Y = X A Y and TG = T° simplifies to T. Moreover, we have the 
following two lemmas, which tell us that we can simplify the definition of D 
and V. 

Lemma 8.2.6. Let I be an object of £ and let X, Y G Subf(J) be subobjects 
of I. Suppose that L is discrete and that X is open. Then (X D Y)° = 
(A D Y°)°. 

Proof. Note first that (A' D Y)° < X D Y°: 

(A D Y)° < X D Y° 

(XDY)°AX<Y° 

(A D Y)° A X° < Y° since A is open 

(A D Y A A)° < Y° since (A D Y)°, X° both disc. 

Y° < Y° 

Hence, using that interior is idempotent, we also have that (X D Y)° < 
X D Y00. The other direction, (A D Y°)° < (A D Y)° is obvious, since 
Y° < Y. D 

Lemma 8.2.7. Let u: I -> J be a morphism of discrete objects in £ and 
let X e Sub£(L) be a subobject of I. Then (VUA)   = (V„A)°. 

Proof. It is clear that (V„A')° < (V„A)° since A < A. For the other direc- 
tion we reason as follows. By adjointness, (V„X)° < (V„A)° holds iff 

V„A < (V„A)° < V„A. 
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We show that in fact 

V„A = VUA- (8.2) 

By taking left adjoints (8.2) holds iff, for any subobject Y of J, 

u*Y° = (u*Y)°. 

But, by Proposition 7.4.7, u*Y° = (u*Y°)° and clearly (uT)° < (u*Y)°. 
Thus it remains to show that (u*Y)° < u*Y°. This follows since by adjoint- 
ness it is equivalent to u*Y < u*Y° = u*Y° = u*Y, which is true. D 

Corollary 8.2.8. Let u: I —>■ J be a morphism of discrete objects in £ and 
let X e Sub£(J) be a subobject of I. Then (V„A°)° = (V„A)°. 

Proof. Using Lemma 8.2.7 (twice) we get (V„A"°)° = (V„Z°)° = (V„A)° = 
(V„A)°. D 

Using the two lemmas above the first-order logic of T)j£ (i.e., the inter- 
nal logic of the subobject fibration on DjS) can be written out explicitly 
as follows. We label the connectives with a subscript d. For all objects 
(types) I,J£ T)j£, all subobjects in Dj£ (corresponding to open subobjects 
in £) X,Y e Subojf(/) and Z G SubDJ£

,(/ X J), and morphisms (terms) 
x,x': l-> X 

(x =d x') = (x = x') 

Td = T 

A Ad Y = (A A Y) 

U = ± 
X Vd Y = X V Y (8.3) 

X Dd Y = (A D Y)° 

-dA = (A D _L)° 

3dj:J. Z = 3j:J. Z 

Vdj:J. Z=(Vj:J. Z)° 

(Note that negation has also been simplified thanks to Lemma 8.2.6.) 
Sub(Djf) 

Substitution in       J,       is interpreted by pullback in Dj£, which, when 

we view the types in £, is the same as pullback in £. 
We see that the geometric part of the logic (T, A, ±, V, 3) is interpreted 

exactly as in £. This should come as no surprise because the inclusion of 
the discrete objects into £ is the inverse image of a geometric morphism and 
thus it preserves geometric logic. 
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8.2.1    Preservation of Validity of Stable Formulas 

We now aim to show that a wider class of sentences than the class of geo- 
metric sentences is preserved by the inclusion of the discrete objects, 

Let r h (p: Prop be a formula of first-order logic over a first-order many- 
sorted language. Suppose that the basic types of the language are inter- 
preted in £ by discrete objects and that the atomic predicates are interpreted 
by open subobjects of discrete objects in £, corresponding to subobjects in 
Bj£. We then write |T h (p: Prop] for the interpretation of T h <p: Prop in 
<f, i.e., in the subobject fibration over £. Likewise, we write [rh^: Prop]d 

for the interpretation of T \- p: Prop in Bj£, i.e., in the subobject fibration 
over Dj£. For notational simplicity we often abbreviate and write [</>] for 
lTh(p: Prop] and [yj]d for (T h <p: Prop],,. Moreover, we allow ourselves to 
consider {ip}d <E SubD^([T]rf) as a subobject in £, thus eliding the inclusion 
functor from discrete objects into £ (here [T}d denotes the discrete object 
interpreting T). Finally, we say that rh^: Prop is valid in £, written in 
short as £ \= <p, iff T < {<p\ in Sub,?([T]), where [r] is the interpretation of 
T.1 Likewise, we say that T h tp: Prop is valid in Bj£, written Dj£ \= cp, if 
Td < lp]d in SubDjf([r]d). 

Definition 8.2.9. Let T \- <p: Prop be a formula of first-order logic over a 
first-order many-sorted language. We say that ip is stable if, for all subfor- 
mulas (ip D ■&) of (p, the formula ip is geometric. 

Lemma 8.2.10. Let T \- <p: Prop be a formula of first-order logic over a 
first-order many-sorted language. If p is stable, then [y?]0 = [ipjd- 

Proof. The proof is by structural induction on <p. Note that [(pjd is discrete, 
and thus open, so |y>]/ = [<,o]d. For <p atomic we clearly have [yj] = {ip\d 

and thus also [<^]0 = \ip\d. Given the result for atomic formulas, for <p a 
geometric formula, we clearly also find that [<^] = \tp\d — see the explicit 

Sub(Djf) 
description of the logical operations in       I       on Page 183.   Hence also 

Dj£ 

H° = l<fi}d- It remains to consider implication and universal quantification. 

Take note that £ 1= ip refers to the interpretation |y>] where atomic predicates are 
interpreted by open subobjects. 
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Suppose that cp = 4'D-d. Then we have that 

{$ D &ld = (y,Jd D l#\d)° see definition of Dd on Page 183 

= ([V']° D M°)° by induction hypothesis 

= (M° ^ M)° by Lemma 8.2.6 

= (M 3 M)° smce ^' is geometric by stability of cp, 

as. required. 
Finally, suppose that <p = V.T : X. ip. Then we have that 

[V.T : X. i/>]d = (V.T: X. [^]d)° see definition of Vrf on Page 183 

= (V.T : A". M)°° by induction 

= (\/x: X. m)° by Corollary 8.2.8 
= {\fx:X.^0, 

as required. O 

Theorem 8.2.11. Let T \- <p: Prop 6e a formula of first-order logic over a 
first-order many-sorted language. If Y h <p: Prop «s sto&fe, then £ \= tp iff 
B3£ \= p. 

Proof. Let I = |T] = {Tjd be the discrete object interpreting P. Then, 
writing <d for the ordering in Subo^-f (/) and writing < for the ordering in 
Subc;(7), we have that 

<=>     Td <d yjd 

^=^ T < lf}d since T^ = T, see Page 183 

T < [<p]° by Lemma 8.2.10 

T < [v?l since I is discrete and thus open 

£^V- 

D 

8.3    A Modal Logic for Local Maps 

So far in this chapter we have only used the interior operation as a semanti- 
cal operation; we have not considered it syntactically as a logical operator. 
We do so in this section. As explained in the introduction to this chapter, 
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interior is not a logical operation in the subobject fibration over £ because 
it does not commute with substitution. However, when we restrict attention 
to discrete objects, interior does commute with substitution, see Proposi- 
tion 8.3.2 below. 

The following definition makes precise the idea of considering the logic 
of £ restricted to discrete objects. 

Pred 
Definition 8.3.1. We define the fibration I of ^-predicates over ~Dj£ by 

change-of-base as in 

Pred ^Sub(£) 

D^c „ 

Pred 

" 

Thus in the internal logic of   J,  , types and terms are interpreted by 

objects and morphisms of D,£ and predicates over a type a, interpreted by 
a discrete object /, are interpreted as subobjects of / in £. In other words, 
we consider all the predicates of £, but only on types and terms from Dj£. 

Pred 

The fibration   J,   is clearly a first-order fibration. (In general it does not 

have a generic object since the subobject classifier 9, in £ in general is not 
a discrete object). We now show that interior commutes with substitution 

Pred 
(reindexing) in    J,  . 

Proposition 8.3.2. Let u: I -» J be a morphism between discrete objects I 
and J in £ and suppose X >-» J is a subobject, ofj. Then (u*X)° = u*(X°) 
as subobjects of I. 

Proof. First note that by Proposition 7.4.7, u*(X°) is open. Thus u*(X°) = 
u*(X°)° < u*X°. The other direction always holds (regardless of I and J 
being discrete): {u*X)° < u*(X°) iff u*X < u*(X°) = u*X. D 

It is instructive to note that the above proposition can also be seen as a 
corollary to the following observation: 

Proposition 8.3.3. Let I be a discrete object and let X w L be a subobject 
of I in £. Then the interior X° of X is ATX (up to isomorphism). 
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Proof. Consider the following commutative diagram 

ATX ^^ X 
v v 

Arm m 

A f-i I, 

where e/ and e.y are the counits. Since / is discrete the arrow £/ across the 
bottom is iso. Since A and V are both left exact, ATm is monic. Thus 
77? o ex = ej o ATm is monic, and hence ex is monic. Therefore A"0 = 

Im(cA') = Arx. a 

Now Proposition 8.3.2 is obtained from Proposition 8.3.3 simply by recalling 
that A and F are left exact and thus commute with pullback. 

Pred 

By Proposition 8.3.2, the interior operation is a logical operation in   \. . 

So is, of course, also the closure operation. In the next subsection we describe 
how the interior and closure operations can be axiomatized, so as to obtain 
what we will refer to as a modal logic for local maps. In the syntactic calculus 
we denote interior by jj and closure by b. The choice of this notation comes 
from our use of fl in our readability model RT(A,A$). In Subsection 8.3.2 

Pred 
we prove that   4,  , as expected, provides a model for the syntactic calculus. 

8.3.1    Axiomatization of a Modal Logic for Local Maps 

We describe an extension of standard intuitionistic first-order logic. As usual 
we write logical entailment as T | 0 h ip, where T is a context of the form 
xi: <7i,... ,xn: an giving types Oi to variables X{, and where if? is a formulas 
with free variables in T, and 6 is a list of formulas with free variables in T. 
We write 0 for an empty list of assumptions. There are two additional logical 
operations: if Lp is a formula, also #</> and b<p are formulas. Substitution of 
terms for variables in these new formulas is defined in the obvious way: 

($<p)[M/x] = $(<p[M/x\)        and        (\><p)[M/x] = Hv>[M/x]). 

There are the usual rules of many-sorted first-order intuitionistic logic plus 
the following axioms and rules: 

(8-4)        „■„■„„    (8-5) 
j r|tf¥>i-</> r | ö¥> h tttlv 
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(8.6)       — (8.7) 
r 10i-ti(T)           ri^AtfV'hj^Av; 

FJt^ (8-8)      i rr( : (8-9) 

Note that Rule (8.7) is a double-rule which can be applied in both directions. 
Intuitively, Axiom (8.4) says that ft is a deflationary operation. Axiom (8.5) 
then says that # is idempotent, Axioms (8.6) and (8.7) say that tf is left 
exact, Rule (8.7) says that ft is left adjoint to b, and Axiom (8.9) expresses 
that all the types are discrete and hence equality is jj. 

From the above axioms and rules one can derive that all of the following 
hold (for notational simplicity, we here leave out the context T, which does 
not change): 

tp h ib ipV- ib 
(8.10) (8.11) 

ÖV  I-   H' blyO  I"   \}lb 

(8.12) (8.13) 
Ö(yAV)l-ttyAtt^ #(¥> Z) V) I- ÖV => ÖV 

(8.14)        (8.15) 
<p h b</5 \)(f Hf- \>\np 

\ ^) Hr 

(8.18) 

bThT b(^A^) HI-b^Ab^' 

0h^ 

01-fa 

(8.19)        (8.20) 
flbv? Hh ttyj bjty» Hh b^ 

The proofs of the above rules are obtained simply by formalizing the usual 
categorical proofs. For example, (8.10) is proved as follows: 

 identity 
H i- H ,    , 
  (8.8) 

<p h ib         ib\- bft^ 
 cut 

uhbU 
  (8.8) 
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As another example, (8.18) is proved as follows: 

Tht9 
(8.6)  (8.10) 

T h JtT                      ÖT f- ^ 
 cut 

Tl-ttv 

Note that (8.4), (8.5), (8.6), and (8.18) together express that (J has the formal 
properties of the box operator in the modal logic S4. That is why we refer 
to the first-order logic axiomatized in this section as a modal logic for local 
maps. It should be observed that b is not the usual diamond, however, which 
is (classically) left rather than right adjoint to box. 

The following principles of inference for the quantifiers can be derived: 

r|0h-tt(V.r:CT. y)  (8>22) 

r|0hV.T:a. JJV   (       }        r I *P* = *• <p) + 3x: a. fa 

Rule (8.21) is derived as follows (using Rules (8.4) and (8.18)): 

r | T h V.T : a. ip 

T, x: a | T h ip 

V, x: a | T h $<p 

T | T h V.T : a. %ip 

(Here we are also using the so-called mate-rule for V: 

T | e,(p\-Vx: a. if) 

T, x : a | 0, cp h ip 

See, e.g., [Jac99, Lemma 4.1.8, Page 230] for the derivation of this double- 
rule.) 

The equivalence in Rule (8.22) is proved as follows. First note that, for 
any T h ^ we have: 

r | Jj(3ar: a. <p) h if> 

T | 3a;: a. </> I- b^> 

F, x: a | (p h \>ij) 

F, x: a | )J<£ I- ij) 

T | 3a;: a. §<p h V' 
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(Here we are also using the so-called mate-rule for 3: 

T | O, 3.r : a. <p (- ilj 

r, x: a | 0, (f h ^> 

See, e.#., [Jac99, Lemma 4.1.8, Page 230] for the derivation of this double- 
rule.) Hence by plugging in 3x: a. fa for ip, we get jj(3.T: a. <p) h 3.T : a. (Jyj. 
Likewise, by plugging in jj(3.r: <r. </>) for V we get 3x: o\ (Jyj h jj(3x: a. </?), 
thus completing the proof of Rule (8.22). 

8.3.2 A Model for the Modal Logic for Local Maps 

Pred 

Proposition 8.3.4.  The fibration    I    is a model for the modal loqic for 

local maps. 

Proof. The interpretation of types and terms is given in the standard way. 
with (J interpreted by the interior operation and b interpreted by the closure 
operation.   Substitution is interpreted correctly by Proposition 8.3.2.  The 

Pred 
standard first-order logic is interpreted soundly since    J,    is a. first-order 

fibration. The new axioms and rules of the modal logic for local maps clearly 
validated: Rules (8.4) and (8.5) hold by the fact that interior is deflationary 
and idempotent, see Definition 7.3.3 and Lemma 7.3.5. Rule (8.6) is sound 
since T is interpreted by the maximal subobject of the discrete object / 
interpreting T — I being discrete entails that / is open and thus that I <i 
1° in Pred/ = Subf (7). Rule (8.7) is sound because supposing that T is 
interpreted by discrete object I and that cp and V' are interpreted by X and 
Y in Pred/, respectively, then A"0 and Y° are discrete (as open subobjects 
of a discrete object), so the pullback X° A Y° is discrete, and thus open, so 

X° A y° = (X° A Y°)° < (X A Y)°. For Rule (8.9) note that the equalizer 
of a pair of morphisms between discrete objects in £ is discrete, since the 
discrete objects are closed under finite limits. Hence the equality predicate 
of two terms is interpreted by a discrete and hence open subobject. D 

8.3.3 Applications of the Modal Logic for Local Maps 

In this subsection we present a couple of examples of applications of the 
logic of discrete objects and the modal logic for local maps. 

Sub(Djf) 
Observe that the definition of the logical predicates in       \.       in (8.3) 

Dj£ 

on Page 183 can now be seen as a syntactic translation from formulas <p 
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of first-order logic into formulas of the modal logic for local maps. We 
write \tp\ for the translation. It is defined in the obvious way — view (8.3) 
syntactically and replace the interior operation in the defining equations 
with a f|. Explicitly: 

\(x = x')\ = {x = x') 

|T| = T 

\cp/\ ip\ = \<p\A\i>\ 

l-M = _L 

\f v V'| = lv|vW 
\f ^ V'l = lt(M=>H) 

hvl = |I(MD-L) 

3j: J. <p\ = 3j:J. M 
Vj: J. (p\ = Jt(Vj: J. M) 

(8.23) 

Note that for <p a geometric formula, \<p\ = <£. 
In the following discussion it will be convenient to assume that our basic 

language of formulas contains two kinds of relation symbols: R, S, ... , and 
#", S\ ... . When considering a first-order formula <p and its interpretation 

Sub(f) 
in      i     we will assume that the relational symbol W> is interpreted by 

£ 
the interior of the interpretation of the relational symbol R. Likewise when 
considering <p a formula of the modal logic for local maps.   Finally, when 

Sub(Djf) 
considering <p a formula of the logic of       4-      > tne formula if must not 

Dj£ 
contain any relational symbols of the form R (i.e., all relational symbols 
must be of the form R^). The translation given above is defined on atomic 
relational symbols as follows: 

\R*\ = p        and        \R\ = R. 

We write2 

Sub(£) 
• [<p] for the interpretation of <p in     .1 

Pred 
• {(flm for the interpretation of ip in    J, 

DjS 

2 As on Page 184 we really interpret sequents r h (p: Prop, but we shall not make that 
explicit in this section. 
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Sub(D^) 
{ipjd for the interpretation of f in       J, 

n F 

and we write 
Sub(<?) 

• £ 1= f if [</>] is valid in     J, 

Pred 
• Pred 1= if if \_if\m is valid in    J, 

Dj£ 

Sub(Djf) 
• D,£ t= <y? if [y>]d is valid in       J, 

We then have that 

1. If if a formula, of first-order logic in which all relational symbols are of 
the form ä" and if all the basic types in if are interpreted by discrete 
objects, then Dj£ 1= <p iff Pred 1= \cp\. 

2. If 9? is a formula of first-order logic and all the basic types in if are 
interpreted by discrete objects, then £ \= f iff Pred 1= ip. 

Using the conventions established here, we now consider two sample appli- 
cations of the modal logic for local maps. 

External Axiom of Choice 

For objects 7 and J in an arbitrary topos £, let us say that the (external) 
axiom of choice holds from, I to J, written EAC(X, Y), if, for any subobject 
R :—» 7 x J, if Vi: 7. 3j: J. R(i,j) is valid (in the subobject fibration over 
£) then there exists a morphism /: 7 -» J in such that Vi: I. R(i,f(i)) is 
valid (in the subobject fibration over £). 

Proposition 8.3.5. Let L and J be discrete objects and suppose that the 
external axiom, of choice holds from I to J in Dj£. Then also the external 
axiom of choice holds from I to J in £. 

Proof. We argue as follows: 

£\=Vi: I. 3j:J. R(i,j) 

=> Pred^Vi: 7. 3j: J. R(iJ) 

=> Pred 1= (t(Vi: 7. 3j: J. $R{iJ))        by modal logic 

Predl=|Vi:J. 3j: J. R*(i,j)\ 

B,£i=yi:I.3j:J.R^i,j) 
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so by EAC(7, J) in Dj£, there exists an /: I -)- J such that 

=$► Pred 1= }J(Vi: /. |ti2(«,/(*))) 

=>■ Pred 1= Vi: /. fi(i, /(*')) by modal logic 

=> £\=Vi:I.R(i,f(i)). 

D 

Church's Thesis 

In this example we show that if the topos of discrete objects satisfies the 
arithmetic form of Church's Thesis (in the sense of, e.g., [TVD88, Tro73]), 
then a Jj'ed version is satisfied by £. 

Observe that £ has a natural numbers object if and only if Dj£ has a 
natural numbers object, because both A: Dj£ —> £ and F: £ —>• Dj£ are 
inverse images of geometric morphisms and as such they preserve the natural 
numbers object (see, e.g., [Joh77, Proposition 6.12]). 

For the remainder of this subsection we assume that Dj£ has a natural 
numbers object N which thus also is the natural numbers object of £. 

Recall from Kleene's Normal Form Theorem that the basic predicates 
of recursion theory can be defined from Kleene's T-predicate and output 
function U: N -»• N, see, e.g., [TvD88]. The predicates T«ArxAfxJV 
and U(-) = (-) are both primitive recursive. Hence their interpretation is 
preserved by the inclusion Dj£c ^£ (i.e., the interpretation of T in Dj£ 
agrees with the interpretation of T in £). Indeed, a predicate R on N is 
primitive recursive iff there is a primitive recursive function \R '• N -> N 
such that XR.(n) = 1 iff R{n) holds. Hence to show that the interpretation 
of primitive recursive predicates is preserved by the inclusion T)j£c ^£, it 
suffices to note that equality is preserved, which it is (see =d on Page 183), 
and that the interpretation of primitive recursive functions is preserved. The 
latter holds as expressed by the following lemma. 

Lemma 8.3.6. Let n: N H M: N be a term built up from the clauses defin- 
ing the class of primitive recursive functions (see, e.g., [TvD88, Defini- 
tion 3.1.2]). Then the interpretation of n: N h M:H in the topos Bj£ 
(a morphism from N to N in Dj£) is the same as the interpretation in £. 

Proof. By induction on the construction of the term M. For the zero con- 
stant, the successor, and the projections, the result follows since the natural 
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numbers object N in DjE is also the natural numbers object in E and be- 
cause the discrete objects are closed under products in E. For composition, 
the result follows since DjE is a full subcategory (so closed under composition 
in E). For definition by recursion, we use the formulation of a natural num- 
bers object involving parameters (see, e.g., [LS86, Exercise 9.4]): The clause 
for definition by recursion says that if /: Nn ->■ N and g: Nn+2 -> N are 
primitive recursive, then there is a primitive recursive function h: Nn -> N 
such that 

/i(0,.Ti,... ,xn) = /(a?i,...a:n) 

h(Sy, a:i,..., xn) = g(h(y, xu .. .xn),y, xu .. .xn). 

Given interpretations /: Nn ->• N and g: Nn+2 ->■ iV of primitive recursive 
terms /: Nn -* N and #: N"+2 -» N, the interpretation of the primitive 
recursive term ft: Nn -» N is /i = -K O k, where k is the unique morphism 
making the diagram below commute 

{°<id) (S,id) 
Nn —i—i_^ N x Nn -^—t—*- N x Nn 

k 

Nn > N x N x Nn ——-*■ N x N x Nn. 
V,o,id) (g,s,td) 

Since this is a diagram only involving discrete objects, the interpretation in 
DjE and in E is of course the same. □ 

In summary, T and U are interpreted in the same way in E as in DjE. 
We recall the following definition from [TvD88, Section 4.3]. 

Definition 8.3.7. The arithmetical form of Church's Thesis is the 
schema 

CT0        Vra. 3m. (p(n,m) D3k. Vrc. 3m. (ip(n,Um) AT(k,n,m)), 

where all the variables range over the type of natural numbers N and where 
if is a formula. 

Proposition 8.3.8. Let <p be a formula and. suppose that the (p instance of 
Sub(Djf) Pred 

CT0 holds in       J,      .  Then the following formula holds in   J,  : 

J}(Vn. 3m. |y>|(n,m))D3A;. Vn. 3m. (|v>|(n, t/m) A r(fe,n,m)). 
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Proof. By the fact that DjS N <p iff Pred (= M we get that 

tt(Vn. 3m. |y>|(n,m)) D 3fc. JJVn. 3m.  fl^K«, Urn) A T(&, n, m)) 

Pred 
holds in    J,  .   The required then follows by the modal logic, using that (J 

commutes with 3 and that #({)<£> D V') ~H~ $¥> 3 tt^- ^ 

Thus, in particular, if all geometric instances of CTo hold in DjS, then all 
geometric instances of 

CTj       tf (Vn. 3m. ¥>(», m)) D 3ft. Vn. 3m. ((p(n, Urn) A T(fc, n, m)) 

Pred 
hold in    J,  . 



Chapter 9 

Logic and Localic Local 
Maps of Toposes 

Suppose given a topos £ with a topology j satisfying the axioms for localic 
local maps set out in the Chapter 7. There results a localic local map of 
toposes 

with (A, T) the localic local map, A the inclusion of the discrete objects and 
T the associated discrete object functor with right adjoint V. All the results 
from the previous chapter applies, since a localic local map is of course a 
special case of a bounded local map. 

In this chapter we investigate two additional simple points of view that 
result from the extra assumption that the local map is localic. In Section 9.1 
we take the point of view of tripos theory and show that the modal logic 
resulting from the localic local map is just a particular case of tripos logic. 
We define a notion of local tripos and show that any local tripos gives rise 
to a localic local map of toposes and, moreover, that any localic local map 
of toposes comes from a local tripos. The actual tripos that results from 
a localic local map is naturally one given on an internal locale (complete 
Heyting algebra). In Section 9.2 we take the point of view of internal locale 
theory and describe the modal operators as certain easily given internal 
maps on an internal locale.  We further observe that a substantial part of 

197 
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the modal logic follows from very weak assumptions (whenever one has an 
internal locale in some topos). 

9.1    Local Triposes 

Pred 

Consider the fibration    J,    obtained in the previous chapter bv change-of- 

base as in 

Pred *Sub(£) 

D^c ^ 

Note that, for any / € Dj£, we have that 

Pred/ = Subs (AI) * £(AI, Q£) 2 Dj£(I, TQ£) (9.1) 

where Q£ is the subobject classifier in £ and where the isomorphisms are 
natural in /. 

Since £ is localic over Dj£ via (A,T), £ is the topos of Dj£-valued 
sheaves on the internal locale TQ£ in D}£ [Joh77, Joh81] In other words, 
Pred 

i   is (equivalent to) the canonical D,-£-tripos on the internal locale TQe 
Dj£ J 

Pred 
and the modal internal logic of   J,   is a particular example of tripos logic. 

Moreover, £ is the topos obtained by the tripos-to-topos construction applied 
Pred 

to the tripos   J,  . 
n £ 

We now define a notion of local tripos and show that any local tripos 
gives rise to a localic local map of toposes and, moreover, that any localic 
local map of toposes comes from a local tripos. In the following section we 
take the viewpoint of the internal locale theory, and consider a notion of 
local internal locale.   The internal locale theory point of view is perhaps 
more standard.   Thus one may reasonably ask:   what is the advantage of 
considering a notion of local tripos to describe a localic local map?   The 
answer is that it can be much easier to recognize a local tripos rather than 
a local internal locale. We shall return to this point and make it clearer in 
the following. 
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P 
Definition 9.1.1. Let Xp  be a canonically-presented tripos on an object 

T 
S in a topos T. The tripos p is said to be local if it comes together with 
maps 7, J: E ->■ S in T satisfying that 

1. p: E | Ip h p 

2. p: S | Ip\-IIp 

3. 0 | 0 h /(T) 

4. p,q:T,\IpAlq\- I(p A </) 

p,?: S | Ip\~q 
5. 

P,?: E |ph Jq 

all hold in the logic of p. 

Note that the axioms and rules that have to hold for 7 and J are just 
as for ft and b in the modal logic for local maps in Section 8.3.I.1 In other 
words, a local tripos models the modal logic for local maps, and we shall 
feel free to use the modal logic in the following when reasoning about local 
triposes. 

Proposition 9.1.2. Let p = Jr(—,E) be a local tripos qua 7, J: E -» E. 
Then J is a Lawvere-Tierney topology on p. 

Proof. One first shows from item (5) in the definition of local tripos that 
I and J are functorial. Then since I is deflationary, J is seen to be infla- 
tionary as a right adjoint to L. Moreover, since I is idempotent, J is also 
idempotent, again using adjointness. Finally, J preserves limits as a right 
adjoint. Further details are left to the reader. D 

Let p = T{—,Y) be a local ^-tripos qua 7, J: E -> E. We define a new 
canonically presented .F-tripos p/ as follows (in the following we prove that 
pi so defined indeed is a tripos). Let 7E be the image of 7 in T. Tripos p/ 
is canonically presented on 7E. The ordering is defined as in p, that is, for 
<p, if) £ T{X, 7E) (p/'s fibre over l€f),we have cp hPl rf> iff (p hp ij>. 

Since J is a topology by Proposition 9.1.2 we have a well-defined F-tripos 
pj as in Section 5.5. 

'The only exception is that we in the definition of local tripos have left out the rule for 
equality - the rule for equality follows since equality in a tripos is given using existential 
quantification and truth T and / commutes with existential quantification as a left adjoint 
and with T by item (3). 
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It is easy to verify that composing with I: E ->■ S gives a fibred functor, 
also denoted I, from pj to pj over T. Likewise, composing with J: S -)■ S 
gives a fibred functor, also denoted ./, from pj to pj over T. 

Lemma 9.1.3. Functor I is a fibred left adjoint to J and the triposes p/ 
and pj are equivalent, as fibrations over I, via the functors I and J. 

Proof. Since both p/ and pj are canonically presented, it suffices to consider 
the fibre over 1. Note first that Ip -\\- Up and that Jp + JIp in tripos 
p (by the modal logic for local maps, see (8.19) and (8.20)). Adjointness is 
shown as follows, for p: E and q: IE, 

p hPj Jq 

p hp JJq 

p hp Jq 

Ip hp q 

Ip hp' q 

For the equivalence, note first that IJ = id because, for q: U 

q \-Pl Uq Uq \-p' q 

q hp IJq and Uq hp q 

q r-p Iq Jqhjq 

(note that q hp Iq since q: IE, so Iq = q). Next note that JI ^ id because, 
for p: E, 

p \-Pj JIp 

JIp \-Pj p php JJlp 
=        and = 

JIp \-p Jp p hp JIp 

Ip h Ip 

D 

By the lemma it follows that p/ has all the first-order structure required in 
the definition of a tripos (since it is defined categorically and thus preserved 
by equivalence functors). It is clear that id: IE -» IE is a generic object 
for pj and thus p/ is indeed a tripos as claimed. 

We now show that every local tripos gives rise to a localic local map of 
toposes. 



9.1 Local Triposes 201 

Theorem 9.1.4. Let p = T(-,E) be a local T-tripos qua 7, J: £ -)■ S. 
Then p jröes me to a localic local map of toposes from T[p] to T[pi]. 

Proof. Write P for the total category of p and P/ for the total category of 
p/. We define three fibred functors over T, as in 

AH/HJ. 

Functor A is simply the inclusion functor. Functor I is induced by compos- 
ing with I: S -> £ and functor J is induced by composing with J: S -)• S. 
It is easy to see that all three functors are fibred, since p and p/ are canon- 
ically presented, and that A is left adjoint to I and that I is left adjoint 
to J. The functor A is left exact since IT, is closed under finite limits in 
£ by items (3) and (4) in the definition of a local tripos. Hence (A, I) is a 
geometric morphism of triposes, as is also (I, J). Functor A is clearly full 
and faithful and thus, by [MM92, Lemma 1, Section VII.4] we also have that 
J is full and faithful (it is also straightforward to verify directly that J is 
full and faithful). 

It follows now, in the same way as in Section 6.2, that the geometric 
morphism from T[p] to T[q\ induced by (A,/) is a localic local map.        D 

Conversely, we have: 

Theorem 9.1.5. Every localic local map of toposes arises from a local tripos 
(in the way given by the proof of Theorem. 9.1.4)- 

Proof We use the notation from the introduction to this chapter and the 
Pred 

introduction to this section.   There we have already noted that    J,    is a 
D3£ 

tripos. Call it p. Moreover, we also know that Dj£[p] is the topos £. 
Pred 

Both the interior operation and the closure operation on   J,   are natural, 
D3£ 

i.e., commute with pullback. Thus they induce internal maps 

i,j: ra5->raf 

in Bj£ via an application of the Yoneda lemma to the natural isomorphisms 
in (9.1) such that I is internally left adjoint to J and I preserves finite 
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limits. Moreover, the internal map I is deflationary and idempotent since 
the interior is so. Thus p is a local D,£-tripos, canonically presented on 
TÜ£. 

Sub(Djf) 
Finally, it is clear that p/ is equivalent to the tripos       4,       since an 

open subobject of a discrete object is open. Hence Dj£[pj] is nothing but 
Dj£ and the resulting local map from £ to Dj£ is the one we started out 
with. rj 

Remark 9.1.6. Let p = T(-,E) be a local F-tripos qua I,J:E -> E. 
From the equivalence of pj and pj and the description of implication and 
forall quantification in pj (see Section 5.5), we get that the implication DPj 

and forall quantification VP/ in p/ is given by 

<p DP/ V = I(<P Dp H)        and        (V£)(v>) = H^F(J<P)). (9.2) 

It is not hard to show that, in fact, we can leave out the application of J 
in (9.2), i.e., 

<f DPI V = I{<p Dp V')        and        (V£)(y>) = /(VF(V)). (9.3) 

Hence the definitions of DP/ and VP/ are indeed as expected — in the case 
Pred Sub(Djf) 

where p is the tripos    I , the tripos p7 is equivalent to       J,       and the 

definition of implication and forall quantification here is exactly given as 
in (9.3) (see the definition of Dd and Vd in (8.3) on Page 183). 

UFam(vM„) 
Example 9.1.7. The relative readability tripos J,r        from 5.1.4, see 

Set 
also Chapter 6, is a local tripos. The maps / and J are given by Ar and 
Vr respectively, see Section 6.2. 

In this realizability example, the topos £ is the topos RT(yl,J4tJ) and 
the topos Dj£ is the topos RT(A, A{) (see Chapter 10 for more on how our 
abstract theory of local maps relate concretely to the relative realizability 
model). Note that if we were just given the topos RT^) with the internal 
locale rfiRT(4)j4|t) it would be quite hard to recognize the canonical tripos on 
this locale as being local, because it is complicated to calculate with internal 
adjoints etc. in RT(A$). That is one reason why it can be advantageous to 
describe a localic local map of toposes via a local tripos (rather than just in 
terms of internal locale theory). 
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Example 9.1.8 (Extensional Readability). Let A be a PCA and let 
p be the standard Set-realizability tripos over A. Let PER(A) denote the 
category of partial equivalence relations over A. Define a tripos r over Set 
by taking predicates over sets I to be elements of PER(A) , that is, 7- 
indexed families of PER's. For two such families <p and ij>, we define the 
ordering over I to be ip \- tp iff there is an a £ A such that, for all i € 7, 
a is in the domain of the PER rp(i)v^ (the exponential in the category of 
PER's). See [PitSl, Section 1.6] and [v097a] for more details. Then the 
tripos r is local over p, since the forgetful functor mapping a PER to its 
domain has both left and right (fibred) full and faithful adjoints. Over 1, 
the left adjoint maps a subset of A to the discrete PER on the subset and 
the right adjoint maps a subset of A to the PER with only one equivalence 
class. See [PitSl, Example 4.9(iii)] and [v097a] for more details. We denote 
the topos resulting from the tripos r by Ext(A). 

This example is special in the sense that the inclusion of RT(^l) into 
Ext (.A) is an open inclusion by Proposition 3.6 of [v097a] (see [Joh77, Sec- 
tion 3.5] for more on open inclusions). That means that the principal topol- 
ogy j in Ext(^), for which RT(A) is equivalent to the category of sheaves, 
is of the form j = (u D —) for some u: 1 —> Q. As a consequence, j has an 
internal left adjoint, namely (t* x —): fi —>• fi. This left adjoint induces the 
interior operation in Ext(A), so the interior operation does commute with 
pullback in this example. 

9.2    Local Internal Locales 

In this section we assume given a localic local map of toposes as in the 
introduction to this chapter. As explained in the previous section (see in 
particular the proof of Theorem 9.1.5), the interior operation and the closure 

Pred 
operation in the resulting internal modal logic    1    correspond to internal 

maps I,J on the internal locale TQ,£. In this section we employ some ab- 
stract theory relating internal locales and localic toposes to conclude that 
the internal maps have a very simple internal description. Moreover, we 
observe that a substantial part of the modal logic results whenever one has 
has an internal locale in a topos. 

Convention 9.2.1. For brevity, we shall sometimes denote the topos Dj£ 
of discrete objects simply by T. Also, we denote the internal locale Tile 
simply by A. (Thus A e T.) 
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Let LTop/jF denote the 2-category of localic /"-toposes and let Locales (T) 
denote the 2-category of internal locales in T and internal locale morphisms. 
The latter is defined in the standard way as the opposite of the category 
Frames^) of internal frames in T and internal frame homomorphisms. 
See, e.g., [MM92, Chapter IX] for a treatment of these categories in the case 
where T = Set. See, e.g., [Joh79a] and [JT84] for more on internal locale 
theory. 

Recall that the 2-category LTop/7" is equivalent to Locales (jF) [Joh79a, 
Theorem 2.7]. The topos T is the terminal object in LTop/J^ and the 
subobject classifier fi = üjr of T is the terminal object in Locales (T) 
(see [Joh79a] for a proof of this fact). By the equivalence of LTop/J7 and 
Locales(T), the unique geometric morphism (A,T): £ -» T in LTop/J" 
corresponds to the unique internal locale map from A to Q. We also denote 
this unique locale map by (A,T). Thus I": A -» Q and A: tt -> A are maps 
in T, with A internally left adjoint to V, and A left exact, as depicted in: 

A lex        and         A    r    Q in T. -«=  
A 

Likewise the geometric morphism (r, V): T -» £, which is a point of £ in 
LTop/J?7, because 

(r,V) 

commutes in the 2-category of toposes and geometric morphisms (i.e., TV = 
id), corresponds to a point of A in Locales(T), that is, a map from the 
terminal object Q to A in Locales (T). We denote this point by (I\ V), 
so V: Q. -> A in T. It also follows by the equivalence of LTop/JF and 
Locales (T) that TA = idn and TV = idü (see Lemma 2.8 and the bot- 
tom of Page 11.18 in [Joh79a] for more details). Summarizing we have the 
following diagram in T: 

AHTHV        and        A lex 
rA = irfn        and       fV = ida 

in T (9"4) 

We call an arbitrary internal locale A in an arbitrary topos T satisfying the 
conditions set out in (9.4) a local internal locale. 
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Pied 
Since the interior operation in   I   is simply the functor Ar, see Proposi- 

Dj£ 

tion 8.3.3, we have that the corresponding internal map / on A is the internal 
functor / = Ar: A ->• A. The internal map J:A4A corresponding to the 

Pred 
closure operation in    J,    is determined (by uniqueness of adjoints) by it 

D3£ 

being the right adjoint to /. By composing adjoints we see that VF: A ->• A 
is right adjoint to J = Ar and thus ./ = VI\ 

Hence by abstract reasoning we have found out what the internal maps 
I and J on A are. We remark that it is also possible to give a more down- 
to-earth (but longer) derivation of what I and J are by employing (1) the 
fact that / and J are obtained via the Yoneda lemma (see the proof of 
Theorem 9.1.5) and (2) results of Johnstone [Joh79a] and Mikkelsen [Mik76] 
concerning the unique internal map to the terminal locale. 

We denote the top element in A by 1A and we write =A (or simply =) for 
the equality on A. By [Joh79a] we have that A and T are internally given 
as 

A(P) = V{1AIP>, (95) 

T(x) = (x=AlA), 

where V is °f course the sup in A. The set { 1A | p } is written using an 
abuse of notation; more properly we should write { x: A | x = 1A Ap}. Since 
V is right adjoint to T we get in the usual way (see, e.g., [MM92, Proof of 
Lemma IX. 1.1, Page 474]) that V is given by 

v(P) = \/{x\rx<p} 

= \/{x\{x = lA)<p}, 

where < is the ordering on Q (i.e., implication D). 
Hence / and J are given by 

I{x) = AT{x) = \J{ 1A I x = 1A }, 

J(x) = VT(x) = \J{y | V { 1A I y = 1A } < x } 

= \f{y\y = ^A^x = iA}. 

Example 9.2.2. Recall Example 7.1.3(i), where X is a topological space 
with a generic point x. Then the base topos T is the category Set, Q is 
the 2-element set {0,1}, and A = Ö(X) is the locale of open sets, where the 
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ordering is inclusion and for which V is union of open sets. Using the above 
formulas for A, T, and V we find that A: 2 ->■ O(X) is given by 

A(0) = 0        and        A(l) = X, 

the map T: O(X) —>■ 2 is given by 

'l    ifU = X, 
r(f') = , 

10    otherwise, 

and V is given by 

0     otherwise, 

V(0)=        (J        U        and        V(1) = A\ 

Thus I,J: 0{X) -» O(X) are given by 

' X   if u = X, 
0     otherwise, 

j(U) = \x [{U = X- 
[Uxtv,veO(x)v    otherwise. 

If X is a Scott domain (and the generic point x e X thus is the bottom 
element _L e X), then J(U) = X\ {±}, whenever U^X. 

9.2.1     Some Remarks on the Existence of V 

Let T be an arbitrary topos with subobject classifier Q and an internal 
locale A. Denote the unique locale map from A to Q by (A, T) as in: 

r 
A lex        and A    T" n in T, 

where A and T are given as in (9.5). 

By (the internal) adjoint functor theorem, T has a right adjoint V iff T 
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preserves all colimits, that is, iff internally in T we have 

r(V *i) =« V Txt (9-6) 
iei iei 

«=» ((V *••) = !A) <n ( V(*• = 1A)) 
iei iei 

*=* ((Va-)=iA) D (\/(a'i=iA0 
ie/ iei 

<=» ((\fxi) = 1A) D 3i: /. (a:,- = 1A). (9-7) 
iei 

If T satisfies condition (9.6) or, equivalently, condition (9.7), we say that T 

is additive. 

Lemma 9.2.3. Suppose that T: A —^ Q is additive (and thus has a right 

adjoint V). Then T is epic. 

Proof. F is epic iff 

Vp: Q. 3x: A. Tx =a p, 

holds in the internal logic of T, that is, iff 

Mp: Q. 3x: A. (a: = 1A) DC p (9.8) 

holds in the internal logic. We prove (9.8) by arguing internally. Let p be 
an arbitrary element of Q and take x to be Ap = \J{1A \ p}. We are then 

to show that 

(\J{1A\P} = IA) JCp. 

Suppose first that p holds. Then 1A € { 1A | P} SO clearly \/{ 1A I P} = 1A- 

For the other direction, suppose that 

\/{IA\P} = 1A 

holds. The set { 1A | p } is short for { x : A | x = 1A Ap }. By additivity of T, 
see (9.7), there exists an x in { x: A | a; = 1A Ap} such that x = 1A- Hence 
there exists an x such that x = 1A A p. Thus p holds, as required. D 

Corollary 9.2.4. Suppose that V: A —»■ fi is additive (and thus has a right 

adjoint V). Then A is monic and TA = icfo. 
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Proof. By Lemma 2.8 in [Joh79a] and Lemma 9.2.3 above. D 

By Corollary 9.2.4 the following proposition follows. 

Proposition 9.2.5. Let A be cm internal locale in a topos T and let (A, T) 
denote the unique map to the terminal locale Q in T. Then A is local iff 
V: A ->■ Q is additive (i.e., iff equation (9.7) holds). 

This proposition is a special case of Proposition 1.7 of Johnstone and 
Moerdijk [JM89]. Johnstone and Moerdijk prove that an .F-topos £ is local 
iff there exists an internal local site for £ in F, where a site D is local if it's 
underlying category has a terminal object t and, moreover, it is internally 
valid in T that, whenever (d{ ->■ t)teI is a cover in D, there exists an i: L 
such that di ->• t has a section. Taking the site to be the internal locale 
A with the usual sup-topology, we see that the condition of Johnstone and 
Moerdijk is exactly our condition (9.7). 

Example 9.2.6. Continuing Example 9.2.2, note that the additivity condi- 
tion in (9.7) says that whenever we have an open cover of X, [ji£l Ui = X, 
then there exists an i € L such that the open set U{ already covers X. That 
this holds is clear since the generic point x e X must be in one of the C/j's 
and the only open set containing x is X itself, so Ui must equal X. 

Remark 9.2.7. It is interesting to note that for any internal locale A in any 
topos T (i.e., even if A is not local), the induced interior map / = AL: A -> 
A satisfies the axioms and rules for the box operator in the prepositional 
modal logic S4: for all x, y: A, 

I(x DA y) hv Ix DA Iy 

Lx \-\ x 

Lx f~A LIx 

hA x 

r-A Lx 

(I-A is of course the ordering <A on A). This can be proved directly using 
the internal adjoints A and T. However, it also follows directly by results of 
Biermann and de Paiva [BdP96]: Let 

(I,e,S) 

be the comonad on A induced by A -\ T. Thus 

/ = Ar 
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and 

is the counit of A H T and 

e: Ar => id 

8 = ArjT = id 

with 77: id =$> TA the unit of A H T, which is an identity. Then (7, e, S) is in 
fact a left exact (and thus suitably monoidal) comonad on A. Moreover, A 
is a (internal) cartesian closed category with coproducts. Therefore we have 
a model of intuitionistic prepositional S4 modal logic [BdP96]. 



Chapter 10 

More on the Relative 
Readability Topos RT(4, A 

We now return to consider the relative readability topos RT{A, A$) from 
Chapter 6 in the light gained from our analysis of local maps of toposes in 
Chapters 7-9. That is the main point of this chapter. ' However, we also 
use this chapter to collect some other specific material on KT(A,A$). Most 
of this material is obtained by verifying that known results for standard 
realizability toposes can be carried over to the relative realizability setting. 

Let us now outline the contents of the chapter in more detail. 
In Section 10.1 we explicitly characterize some of the objects and opera- 

tions used in the abstract development in Chapters 7-9. We argue that the 
interior operation can be seen intuitively to carve out the subset of com- 
putable elements of an object. We also include a concrete treatment of the 
associated discrete object functor. 

In Section 10.2 we describe explicitly how the modal logic for local maps 
is interpreted in RT(AÖ) and RT^,^). 

In Section 10.3 we comment on the relationship between the logics of 
RT(il, A$) and RT(J4[j); in particular we prove that the inclusion of RT(J4jj) 
into RT(^4, A$) does not preserve all of first-order logic. 

In Section 10.5 we present a number of facts concerning the double- 
negation topology in RT(A,Ai). Many of the properties concerning the 
double-negation topology in standard realizability toposes also hold for the 
relative realizability topos RT(^4, A$). We also define subcategories of assem- 
blies and modest sets over A with respect to A$ and show that they have the 
same relationships with each other and with RT(A, A$) as the correspond- 
ing categories of assemblies and modest sets have for standard realizability 

211 
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toposes. Furthermore, we show that the interior operation has a particu- 
larly simple description for -1-1-separated objects and we present a concrete 
example in which the interior operation indeed precisely returns the subset 
of computable elements of an object. 

In Section 10.6 we show that RT(A,A$) can also be described as the 
exact completion of it's full subcategory of projectives in the same wav as 
RT(A) can. 

10.1    Some Objects and Maps in RT(A,A$) 

Recall that by Theorem 6.2.3, (A, T): RT(,4, At) -» RT^) is a localic local 
map of toposes. Thus by the discussion in Section 7.2, we have the following 
picture: 

RT(A,A 

KT(4,) ShjRT(^,^8) 
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AHTH V, 
Ari HaH i, 

aVn^t'rf, 
HaV £ id, 
A f+f, lex, 
Vf+f. 

In this section we identify the topology j in RT (A.A^. To this end we 
first explicate what the subobject classifiers are in RT(TIJJ) and RT(A, Ajj) 
(Subsection 10.1.1). Then we identify the topology j (Subsection 10.1.2) and 
we describe what the discrete objects are in RT(A,A$) (Subsection 10.1.3). 
Moreover, we show how to calculate the action of the interior operation 
(Subsection 10.1.4), and we give a concrete treatment in the RT(A,A$) 
model of the associated discrete object functor (Subsection 10.1.5). 

10.1.1    Subobject Classifiers in RT^) and RT(A,A$) 

By Section 5.2.3, the subobject classifier ORT^,) in RT(A, A$) is given by 

^KT(A,A() = {PA,~) 

with 

p,q: PA | p « g =f p JC q = {(a,b) \ a: p D q and b: q D p and a,b G A}. 

UFam(/Mj) 
Note that the biimplication is given as in the tripos 4/ underlying 

Set 

RT(A,A$).  We simply write ^KT(A,At) = {PA,JC), and sometimes, when 
no confusion can arise, we leave out the subscript on iljd^A,At)- 

The subobject classifier, ^RT^,) 
m RT(A(|) is given by 

fiRT(A,A,) = (^.«) 

with 

p,q: PA$ | p w q = p DC q = {(a,b)\a: pD q and b: q D p and a,b G A$}. 

UFam(i|) 
Note that the biimplication is given as in the tripos        4-q       underlying 

Set 
RT(Ajj), that is, it involves computable realizers from A$. We simply write 
^RTU.) — (-P-^il) 3C0)) ana- sometimes, when no confusion can arise, we leave 
out the subscript on ^RT^,)- 
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10.1.2 The topology j in RT(A, Ay) 

Let ft = QRT(^)j4|) be the subobject classifier in RT{A,Ay). By Section 5.5, 
the Lawvere-Tierney topology j: ft ->- ft classifies the strict predicate J on 
ft given by 

J{p) = 'VT(p)= \J (^A^nAppni,)). 
V€PA 

Thus by Section 5.2.3 the classifying map j: ft ->■ ft is represented by the 
functional relation 

p, g: ft | j(p, </)  =f (p DC p) A J(p) X q 

= J(P) 3C q. 

10.1.3 Discrete Objects in RT(A, At) 

Since the functor A: RT(J4tj) -> RT^,^) really is an identity functor, 
an object, in RT(A,Ay) is discrete iff it is isomorphic to an object from 
RT(A, Ay). In other words, the discrete objects in RT(^, Ay) are the replete 
image of RT(.4B) in RT(A,Ay). 

10.1.4 Interior in RT(A,Ay) 

By the proof of Proposition 7.3.39, the interior of an object X 6 RT(,4, Ay) 
is calculated as the image of the counit ex : ATiaX -» X of ATi H a. Since 
Ti a = T, the is equivalent to taking the image of the counit ex : ATX ->• A' 
of A H r. 

Let (X,«A') be an object of RT(A,Ay). As explained on Page 132 the 
counit at (A', «A-) of A H T 

«(*,«*) :Ar(X, «*)->(*,«*) 

is represented by the functional relation 

E(x, x') = (a; «* «) n vlj| A (a; KX X'). 

Thus the interior of (A', tax) (the image of e(x,&)) is 

where 

x,x': X \x &'x x' =f a; «A »' A 3x0: A. (x0 &x x0) D Ay A (x0 «y x). 
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Remark 10.1.1. Let us attempt to give an intuitive reading of the interior 
operation. We think of an object (A', «x) in RT(A, A$) as a set X with 
a partial equivalence relation «x on it. Thus "elements" of (A", «.Y) are 
really to be thought of as equivalence classes of X w.r.t. «x- The par- 
tial equivalence relation is given via continuous realizers, in the sense that 
x «x %' is a subset of A. We can say that an x0 £ X is "computable" 
if (.TO ~x a-'o) n A$ ^ 0 and extend this to say that an element of (A',«), 
i.e., an equivalence class, is "computable" if the equivalence class contains 
a computable representative. Thinking in this way, we read the interior of 
an object (X, «) as the subset of (A',«) consisting of all the computable 
elements (those equivalence classes that have a computable representative 
x0). In Example 10.5.19 we give a concrete example where it is absolutely 
clear that the interior really does give the computable elements. 

Continuing in this intuitive style, we also note the difference between 
Ar(A", «j) and the interior (A', «A')°- The interior (A', «x)° is a quotient of 
Ar(A', &x)- indeed we can think of AT (A, «Y) 

as a refinement of (A, «y) 
in which the equivalence classes of (A", «A") 

are possibly split up into several 
equivalence classes since the partial equivalence relation «x ^^tt is ^ner 

(makes more distinctions) than the partial equivalence relation fax- The 
idea, is that computably we cannot make as many identifications as we can 
continuously. 

Proposition 10.1.2.  The subobject classifier Q in RT(A,A$) is open. 

Proof. The interior of Q is Ü0 = (PA,^r), where 

p,q: PA | p «' q d= p DC q A 3r: PA. (r DC r) D A% A (r DC p). 

But clearly ?s' is isomorphic to DC in UFam(^4, A$)pAxPA, that is, 

p, q: P A | p «' q Hh p X </ 

holds in the internal logic of the tripos q underlying RT{A,A^). The reason 
is that we can just take r to be p — note that (r DC r) l~l -Aj is trivially 
realized by the identity function. Thus Q° = Q. D 

The fact that fi is open can be used to show that the open objects are not 
closed under finite limits in RT(A,A$): 

Proposition 10.1.3. The open objects in RT(A,A$) are not closed under 
finite limits in RT(A,A$). 
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Proof. Suppose for a contradiction that the open objects are closed under 
finite limits. Let X be an open object and let U >-=• A" be any subobject of 
A'. Consider the following pullback diagram 

U 
YJ 

■*I 

with xu the classifying map of U >-> X. Then by the assumption that the 
open objects are closed under finite limits we get that U is open, since X, 
1 and Q (by the previous proposition) are all open. Thus we conclude that 
any subobject U of an open object A" is open, which is clearly not the case 
(think of X = 1), and hence we have a contradiction. □ 

Remark 10.1.4. From the above proposition we see that in general we 
cannot expect the interior operator to commute with pullbacks along open 
objects. Therefore we cannot in general enlarge the collection of types for 
the modal logic for local maps from the discrete objects to the open objects. 

10.1.5    The Associated Discrete Object Functor in RT(A,J4ti) 

The functor T is of course the associated discrete object functor. For ex- 
planatory purposes we now work out the abstract construction of the associ- 
ated discrete object functor (see the proof of Theorem 7.3.31) in RT^,^). 
The hope is that this will give the reader a more intuitive understanding of 
the abstract construction of the associated discrete object functor. 

Let (A, wA') be an object of RT(A,A$).  Consider the diagram for the 
associated discrete object functor's action on (A', ~A)

: 

/C ■*KR 

(A, E'x) ^^ (A, EX) -^ (A, 3Sx(T)) 

e" e 
| :: 

(A, äx)° -J-* (X, K'x) —-* (A, «AO, 

where 
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• (X,3sx{T)) is an object of RT(A|j) {i.e., is discrete), where 3$X(T) is 

the constant equality: 

,  _ J A    if x = x', 
A ' [0     otherwise. 

• Ex is given as 

E r(x x'\ = i
x~x x>    if x = x>' 

1 0 otherwise. 

• e is represented by the (functional) relation «\r- 

• (X, K^-) is the interior of X (see above). 

• (X, E'x) is the interior of X, with i?^ given as 

A       f (z ~A' a;') n AH    if X = X' and (a; « x x') nA^Q, 
Ex(x,x) = < 

10 otherwise. 

Note that (A', £^) is an object of RT(^4jj) since the equality predicate 
is P^4(j-valued — this phenomenon is an instance of the fact that an 
open subobject of a discrete object, in this case (X, 3$X(T)), is again 

discrete. 

• eo is represented by the functional relation EQ given by 

EQ(X,X') = E'x(x,x) A x «x x'• 

• Keo is represented by a strict predicate on (X,E'X) X (X,E'X) given 

by 

Keo(x,x') = E'x(x) AE'x(x') AX &X x'. 

• Keo° is represented by a strict predicate on (X, E'x) X (X, E'x) given 

by   : 

Keo°(x, x') = E'x(x) A E'x(x') A (x &x x') n A$ 
= (x ttX x') n A§ 

(the isomorphism being in UFam(^4, A^)XxX). 
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•  (-Y,«A')° is therefore isomorphic to r(A', KX) = {X,T «y), where, 
recall, (r ^x)(x, x') = (x «A .?') ni,. 

Thus we have seen concretely how the associated discrete object functor 
applied to an object (A', wA') indeed gives r(A", «A). 

It was partly via concrete calculations such as these that I found the 
abstract construction of the associated discrete object functor in the proof 
of Theorem 7.3.31. 

10.2    Interpretation of the Modal Logic in RT(^) 
andRT(i4,i4|) 

Pred 
By the results in Chapter 9, the fibration        I       obtained by change-of- 

KT(A,At) 
base as in 

Pred »■ Sub(RT(^, At)) 

is a local tripos which is a model of the modal logic for local maps described 
in Section 8.3. 

Thus in this model of the modal logic, types and terms are interpreted 
in the standard way as objects and morphisms in RT(A,A$). A context 
T = xi: (Ti,... ,xn: on is interpreted in the standard way as an object 
/ = Xi X • • • X Xn in RT(Ajt), with A",- the object interpreting CTJ. Formulas 
r I- if: Prop in context F are interpreted as subobjects in £ of A7 = / 
(with I the interpretation of F). As explained in Section 5.2.3, subobjects 
in RT(A A§) are equivalent to strict and extensional predicates in the tripos 
UFam(i,i|) 

4/ underlying RT(A,A$). In other words, if (/,«/) is an object of 
Set 

RT(yljj) (a context), then a predicate <p in Pred(/)W/) is a strict, extensional 
predicate (p: I -> PA; strict in the sense that 

i: I | ip(i) \- i.Ki[ i (10.1) 

holds in the logic of tripos r and extensional in the sense that 

i, i': I | (?: «/ i') A <p{i) h <p{i') (10.2) 



10.2 Interpretation of the Modal Logic in RT(^u) and RT(A, A$) 219 

holds in the logic of tripos r. We recall that (10.1) means that 

3o <E A$. Vi € /. V6 G <p{i). a-be {i~i i) 

and that (10.2) means that 

3a € At. Vi, i' € /. V& e {i «j *')• Vc € y>(i). a • (6, c) € ¥>(*')• 

The atomic predicates T, _L, logical connectives A, D, V, and quantifiers 
3 and V are all interpreted in as in the logic oiKT(A, A$) (see Section 5.2.5). 

Consider a formula in context T \- <p: Prop with V interpreted by an 
object (I,~i) € RT(AJJ) and tp interpreted as a strict, extensional predicate 
<p: I -> PA on (/,«/). By Propositions 8.3.4 and 8.3.3, the interpretation 
of the formula r h jjy?: Prop is the strict predicate $ip given by 

(tM(0 = ¥>(*") n % 

Likewise the interpretation of the formula V \- btp: Prop is, by Proposi- 
tion 8.3.4 given by the closure operation associated with the topology j. By 
Subsection 10.1.2 above, F h \)<p: Prop is thus explicitly interpreted as the 
strict predicate \><p given by 

(M(0= U («M^^^W^i 

As explained in Section 9.1, the internal locale A = IXORT^A,)) = 
(PA,ftS) with 

p,q: PA\p^'q  = (p JO q) fi At 

= {(a,b) e A$\\/c £ p. a- c e q and Vc 6 </. b ■ c G p } 

Pred 
is a generic object for the tripos       J, 

RT^M,) 
Summarizing we have that, for a type (objects) (J, ssj) in RT^u) and 

for strict and extensional predicates ip: J —> PA and ip: J -> P^4 the 
prepositional operations are interpreted as follows (on the right hand side 

\JFam(A,At) 
of the equations we use the operations of the tripos 4/        — we recall 

Set 
what they are by also giving the explicit set-theoretic definitions in terms 
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of realizers). 

(<P*$)U) = <PU)KII>(J) 

= { (a, b)\ae p{j) and b G V'l?) } 
±(j) = 0 

{<pv$)U) = <p{j)vl>(j) 
= {(K,a)\aep(i)}u{(KI,b)\bep(i)} 

(V ^ V)U) = (j ~J j) A (<p(j) D V(i)) 

= { (a, 6) | a G (j «j j) and b G 4 and Vc G <^(j). 6 • c G V(J) } 
(M (j) = ¥>(*') n 4, 

(M(J')=  U  (^(gnip^ni,)). 
9GPA 

Given a strict and extensional predicate p on (/, «/) x (J, «j) we have that 

(3j: (J, tzj). p) (i) = 3j: J. (j «j j) A ^(z, j) 

= U^°'6) I ° e (■? ~J •?') and ö e vfrj)} 

(Vj: («/,«/). p)(i) = Vj: J. (j «j j) D ^(i) 

= f]{ a G 4 | V6 G (J «j j). a ■ b G y>(«) }, 
jeJ 

Finally, a closed predicate ip: 1 ->■ P4 is vaM iff it contains a realizer in 
% so a (open) predicate y>: J -* P4 on (J, «j) is valid iff (Vj: (J, wj). y>) 
contains a realizer in ylj. 

10.3    On the Relationship  Between the Logic of 
RT(i4s) and RT(^,^) 

The results in Chapter 8 concerning the preservation of the interpretation 
of stable formulas (Theorem 8.2.11) and the results concerning Church's 
Thesis all apply in our case of RT^) and RT(A,Ai). It is natural to ask 
if in fact a larger fragment of logic is preserved by the inclusion A of the 
discrete objects RT(^Ö) into RT(^, A%). In this section we prove a negative 
result: we show that the geometric morphism (A, T): RT(A, A{) ->■ RT(A%) 
is not open.  Recall that if a geometric morphism is open, then the inverse 
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image functor (the inclusion A: RT(yljj) -> RT(A, A$) in this case) preserves 
first-order logic. See [MM92, Section IX.6] and [Joh80] for more on open 
maps of toposes. 

Theorem 10.3.1. The geometric morphism (A,T): RT(A,A$) -> RT(A$) 

is not open. 

Proof. Suppose for a contradiction that (A, T) is open so that A: RT(A|j) —>• 
RT(T4, A$) preserves first-order logic. Since the functor RT(A, A$) —> RT(A), 

call it Q, from Section 6.1 is logical we then have that the composite functor 

QA: KF(At) -+ RT{A) 

preserves first-order logic. Recall that A preserves the natural numbers ob- 
ject iV in RT(^o) as an inverse image functor. Moreover, Q also preserves 
the natural numbers object in RT(A, A$) since Q is logical and thus pre- 
serves finite limits and finite colimits (this is enough to preserve the natural 
numbers object by Freyd's characterization of it, see [Joh77, Theorem 6.14]). 
Hence QA preserves the natural numbers object of RT(^ljj) and thus QA 

preserves first-order arithmetic. 
Now let A be the graph model PCA P from Example 3.1.15 and let A$ 

be the r.e. sub-model RE of P from Example 3.1.16. It is well-known that 
RT(RE) satisfies all instances of the arithmetical form of Church's Thesis 
CT0 (see Definition 8.3.7 in Section 8.3.3). So by applying QA we also 
get that RT(P) satisfies all instances of CTo- But since it is also known 
that the valid first-order arithmetical sentences in RT(P) are exactly all the 
classically true sentences we have a contradiction since CT0 is not valid 
classically [TvD88, Section 4.3.3]. 

The idea of using the logical functor Q in this proof is due to Jaap 
van Oosten. □ 

10.4    On the Relation to RT(J4) 

In Section 6.1 we explained that RT(^4) is the filter-quotient of RT(,4, A$) by 
the filter of subobjects of 1 consisting of all those subobjects of 1 correspond- 
ing to inhabited subsets of A. We now remark that this (external) filter of 
subobjects of 1 actually arises in the standard way [Joh77, Page 319] from 

the internal filter on the internal locale A = T(QRT(A,Ai)) &Yen (internally) 

by 

T={xe A I aj-#'JLA}. 
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(We sketch below how one proves this claim.) This means that in the logic 
ofRT(A^) we can describe 

• the construction ofRT(A,A$): by the tripos-to-topos construction on 
the internal locale A 

• the construction ofRT(A): by the tripos-to-topos construction applied 
to the internal locale A but with entailment of <p, ^: X ->■ A redefined 
to mean (Vz: X. <p(x) D 4>(x)) £ T, where V is interpreted by the 
internal meet of A (see Section 5.1.3) 

Whether these observations are of any practical import remains to be seen 
since we can also describe all three realizability toposes in the logic of the 

UFam(4,/l,) 
tripos \r        which may be simpler to calculate with. 

Set 
We now show that T is an internal filter.  It of course suffices to show 

that 

Vx,y: A. (x £ _LA) A (y ^ _LA) D (x AA y) + J_A (10.3) 

is valid in the internal logic of RT^).   The intuitive argument is that A 
UFam(4,^||) 

is the internal poset reflection of the fibre over 1 in \x       , and in 
Set 

UFam(yl,^)j)1 we of course have that if p and q are not empty (not the 
least element), then p A q is also not empty. This argument can be made 
precise as follows. 

We first observe that the subobject classifier Q = (PA, X) in RT(,4, A$) 
is a quotient of Vr(PA): 

Vr(PA) 

DC 

Q 

(this is just as for standard realizability toposes [Hyl82]). Further, the partial 
ordering <a on Q is induced by the subobject R >-» Vr(FA) x Vr(PA) 
represented by the strict relation 

a,ß: PA | R(a,ß) = a D ß. 

Now, since T preserves both limits and colimits (as a right and left adjoint) 
we get that A = T(Q) internally in KT(A,Ai) is a quotient of T(Vr(P^)), 
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which by Theorem 6.2.6 is isomorphic to Vq{PA). In a diagram, we have 

Vq(/M) 

A, 

where the quotient morphism is represented by a De" ß = (a DC ß) C\ A$. 
Further we get that that the partial ordering on A is represented by the 
strict relation TR given by 

a, ß: PA | TR(a, ß) = (a D ß) n Ah 

where D is the implication in the tripos underlying RT(^4, Ay). The internal 
conjunction map AA on A is induced by the conjunction map 

AVq(iM): Vq(PA) X Vq(PA) -». Vq(PA) 

represented by the functional relation 

a, ß: PA\\a AV,(PA) ß\ =f <*Aß, 

where A is the conjunction in the tripos underlying KT(A,A$). To show 
that (10.3) is valid in RT(^4p) it then suffices to show that 

Va,ß: Vq(PA). ^(TR(a, 0)) A ^(TR(ß, 0)) D ^(TR(a AVq(/M) ß, 0)) 

is valid in RT(^JJ). Unfolding the definitions, we see that it suffices to show 
that 

Va,/3: PA. (-,(TR{a, 0)) A (-.(ri2(/?,0))) D (^TR(a AVq{PA) ß))) 

is valid in the tripos q underlying RT(,4(j). But this is clearly the case, the 
identity Xx.x is a realizer — note that the point is, as already mentioned 
above, that if a and ß are both non-empty, then also a Avq(p^t) ß is non- 
empty. 

10.5    The Double-Negation Topology in RT(J4, A%) 

In this section we present a number of definitions and facts about the -i-i- 
topology in RT(A,Ay). The results are as one would expect, based on the 
experience with standard realizability toposes over PCA's.   The proofs of 
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the results are essentially the same as for a standard realizability topos over 
a PCA, and we therefore do not include them. See, e.g., [HJP80, Pit81, 
Hyl82, RR90, Car95, Jac99] for the proofs for RT(A). In Subsection 10.5.1 
we describe the interior operation explicitly on -■-■-separated objects. Fur- 
thermore, we give a concrete example of the interior operation which serves 
to show that we indeed can think of the interior operation as carving out 
the computable elements of an object, cf. Remark 10.1.1. 

Convention 10.5.1. Unless otherwise mentioned, the topology referred to 
in this section is the -i-i-topology. 

VFam(A.At) 
Recall that RT(A, A$) is obtained from the tripos \j       , see Chap- 

Set 
ter 6.   Consider the geometric morphism (rr,Vr): Set -» RT(,4,,4t|) from 
Section 6.2. Recall that rr(7, ca) = Dom~/~' where ~' is the least equiva- 
lence relation on Dom~ containing ~, with i ~ i' iff \i « i'\ ^ 0. Further, 
recall that Vr(X) = (A', fnx) where 

A    if or = x', 

0     otherwise. 

and that Vr(A') ^ (X,fn'x) where 

|a; ~x x'\ = 
{K}      if.T = .T', 

0 otherwise. 

Lemma 10.5.2.  The functor V: Set ->• RT(A, A$) preserves the initial ob- 
ject. 

It follows, as for the Effective Topos [Hyl82], that Set is equivalent to 
the category of sheaves for the double negation topology -.-. in RT(A,A$). 

Let (<p: I -> PA) £ SPred(RT(,4, A$)) be a strict predicate on (/,«) e 
RT^,^). Then 

.      JE^i)    if ¥»(*) ^0, 
-1-1^3 = l I—>■   < T \   /   i        ; 

[0 otherwise. 

Thus ip is closed iff 

3a e At Vi e /. (<f(i) ^ 0 =*► V6 e £7(i). o(6) € y>(i)). 

Note that <p is dense if, for each i G /, 

Ej(i) ^ 0 =$►  <p(i) ^ 0. 



10.5 The Double-Negation Topology in RT^,^) 225 

Lemma 10.5.3. The ^-closed subobjects of (/,«) G RT(A,.4jj) corre- 
spond to subsets q/Tr(/, ~). More precisely, there is a change-of-base situ- 
ation 

ClSub_(RTM, An)) *- Sub (Set) 

RT(A, At) *- Set. 
1 r 

Definition 10.5.4. An object (/,«/) G RT(A,A[j) is canonically sepa- 
rated if 

\i «7 i'| ^ 0 =>.  t = »'        and £/(*') / 0 

An object (/,«/) G RT(A, Aj) is canonically modest if it is canonically 
separated and, moreover, 

Ei(i)f\Ei{i') ^0 => i = i'. 

We often say that an object is canonically separated (or modest) if it iso- 
morphic to a canonically separated (or modest) object. 

Note that Vr(A~) is canonically separated, for all A G Set. 

Lemma 10.5.5. In the topos RT(A, A$) the following hold: 

1. Every subobject of a canonically separated object is canonically sepa- 
rated. 

2. Every subobject of a canonically modest object is canonically modest. 

3. If R G SPred((7, ~) X (7, «)) is a closed equivalence relation on (I, «), 
then (7, 7?) in the quotient (I, «) -» (7, R) is canonically separated, and 
it is modest if (7,«) is. Conversely, if (I, R) is canonically separated, 
then R is closed. 

Definition 10.5.6. Define Asm(A, A$) to be the subcategory of Asm(A) 
with objects all the objects of Asm(A) and with morphisms those morphism 
of Asm(A) that are tracked by a realizer from A$. That is, (X,Ex) is an 
object of Asm(i, A$) if X is a set and Ex : X -> PA is a function such that 
Ex{x) ^ 0, for all x G X. Further, /: (A, Ex) -> (Y, EY) is in Asm(A, At) 
iff 

x:X\Ex(x)\-EY{f(x)) 

is valid in tripos r. 
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The adjunction 

rr 

RT{A, At)~L    Set 

restricts to an adjunction 

Asm(^,Att) ej.? Set 

where V(A") = (X,EX), with Ex(x) = A, and where Tr(X,Ex) = A. We 
repeat that Tr is not isomorphic to the global sections functor 

HomAsm(^)i4||)(l,-). 

Indeed HomAsm(^^()(1, (X, Ex)) is isomorphic to the underlying set of 
F(A~, Ex), i.e., the set of elements x in X for which -Ej^a;) D A% ^ 0. 

Theorem 10.5.7. The category Asm(4, A$) of assemblies is equivalent to 
the full subcategory of RT(A, A$) on the canonically separated objects. It is 
also equivalent to the full subcategory of separated objects. 

Definition 10.5.8. The category Mod(^,^B) of modest sets over A 
with respect to A% is defined to be the full subcategory of Asm(,4, A%) 
on the modest objects, i.e., those (A, Ex) satisfying that Ex(x) D Ex(x') ^ 
0 =>  x = x', for all x, x' e A. 

Definition 10.5.9. The category PER(^, A^) of partial equivalence re- 
lations over A with respect to A$ is the category with 

objects partial equivalence relations on A 

morphisms    R -*■ S are equivalence classes of realizers b G A$ satisfying 

aRa' => 6(a) S b(a') 

with two such 6 and 6' equivalent iff 

aRa ==>•  6(a) S b'(a). 

Proposition 10.5.10. The categories PER(A, At) and Mod(A, A$) are 
equivalent. 
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The category PER(/1, Ay) is a small category and can be seen as an 
internal category in Asm(J4, Ay) whose externalization consists of families of 
partial equivalence relations with morphisms between such families tracked 
uniformly by computable realizers. The externalization is complete as a 
fibration (i.e., has coproducts and fibred finite limits) and thus PER(,4, Ay) 

is a small internally complete category in Asm(A, Ay). The results and their 
proofs are analogous to those for PER(yl) and Asm(A), see, e.g., [Jac99], 

and we do not include them here. 

Definition 10.5.11. We define the following two objects of realizers in 

RT(A,Ay): 

A = (A,^A)        and        Ay = (Ay,&At) 

where \a &A a'\ = {a} D {a'} and \a &A} «'I = {«} H {«'}• 

Note that these two objects are both modest. We often simply write 
them as (A, EA) with -EU(a) = {a} and (Ay, EAi) with EAl(a) = {a}. 

Proposition 10.5.12. The category PER(A, Ay) is equivalent to the full 

subcategory ofRT(A,Ay) on the separated subquotients (X,Ex) of (closed) 
subobjects (Y, «) of the object of realizers A. 

(Y,«)> *{A,EA) 

(X,EX) 

Lemma 10.5.13. V: Set —>■ RT(A,Ay) preserves epimorphism. 

Proposition 10.5.14. The category of Mod(A, Ay) is a reflective subcat- 
egory of Asm(A, Ay), which again is a reflective subcategory of RT(A, Ay). 
Both, of the reflectors preserve products, so both inclusions form exponential 

ideals. 

10.5.1    Interior and -i-i-separated Objects 

For -i-i-separated objects the interior is nothing but the composite of func- 
tors A and F: 

Proposition 10.5.15. Let (X,&x) € RT^-Ajj) be -i-*-separated. Then 

the interior (X, &x)° of (X,&x) is isomorphic to Ar(X, «x)- 
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Proof. Recall from Section 10.1.4 that the interior of (X, «A) is obtained by 
taking the image of the counit AT(X, «A) -> (X, «A) of A H T. Therefore 
it clearly suffices to show that this counit is monic. Recall that the counit 
is represented by the functional relation 

E(x, x') = (x &x x) n A$ A (x «A- x'). 

Using that we (by Theorem 10.5.7) may assume that (A', wA') is canonically 
separated, it is easy to see that E represents a monomorphism, i.e., 

a-i, x2, x: X | E(x1,x) A E(x2, x) h (x-^ &x x2) f~l A$ 

is valid in the logic of the tripos r underlying RT^,^) (it is realized by 
the ^jj-realizer \x. TT(7T(X)).) □ 

Using the above proposition we now embark on developing a concrete exam- 
ple (see Example 10.5.19 below), which shows that the interior of an object 
A' in RT(A,AQ) really does consist of the computable elements of A", as 
hinted at in Remark 10.1.1. To this end we first establish a couple of simple 
facts concerning exponentials. 

Recall the following standard proposition concerning exponentials in 
cartesian closed categories related by an adjunction. 

Proposition 10.5.16. Let C and IP be cartesian categories, withD closed, 
and let 

F 

C    -J- > D 

be an adjunction with F full and faithful and product-preserving.  Then XY 

in C is isomorphic to G(FXFY). 

Proof. 

C(Z, G{FYFX)) * U>(FZ, FYFX) 

^D{FZ xFX,FY) 

= D(F(Z xX),FY) 

^C{Z x X,Y). 

D 

Corollary 10.5.17.  For objects X,Y  €  RT(J4tJ),   the exponential Yx  in 
RT(,4|j) is isomorphic to T((Ay)(A*)). 
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Corollary 10.5.18. For ->-i-separated objects X,Y G RT(A$), the expo- 
nential XY in RT(yljj) is isomorphic to the interior of the exponential of X 
andY in KF{A,At). 

Proof Formally the proposition says that A(XY) ^ ((AI)(4y')° in the 
topos RT(^, A$). This follows by Corollary 10.5.17 and Proposition 10.5.15. 

D 

Example 10.5.19. The point of this example is to demonstrate that, in a 
concrete case, the interior of an object indeed consists of the computable 
elements, cf. Remark 10.1.1. 

Let A be the graph model PCA P from Example 3.1.15 and let A$ be 
the r.e. sub-model RE of P from Example 3.1.16. 

The natural numbers object N in RT (RE) is the modest set (N, EN) with 
Ejsr(n) = {{n}}. This is then also the natural numbers object in RT(P, RE) 
and in RT(P). 

The exponential NN of the natural numbers object N in RT (RE) is the 
modest set (A", Ex) with underlying set X the set of recursive functions from 
the natural numbers to the natural numbers, and with each Ex(f) the set 
of elements of RE tracking /. 

The exponential NN in RT(P, RE) is the same as in RT(P), namely 
(NN,E) with NN the exponential in Set, i.e., the set of all set-theoretic 
functions from the natural numbers to the natural numbers, and with E(f) 
the set of elements of P tracking /. 

By Corollary 10.5.18 we see that NN in RT (RE) is isomorphic to the 
interior of NN in RT(P). Thus we see that the interior indeed carves out 
the computable elements of NN. 

10.6    RT(A,A$) as an Exact Completion 

In this section we show that RT(A,A^) can be described as the exact com- 
pletion of its full subcategory of projectives. The development is analogous 
to the one for RT(^) in [RR90] and the proofs of the results are essentially 
the same as for RT(^4) and we therefore leave out most of them. We as- 
sume familiarity with the exact and the regular completion of a left exact 
category [Car95, CV98]). 

Definition 10.6.1. We define PartAsm(A, A$), the category of parti- 
tioned assemblies over A with respect to A$, to be the category with 
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objects surjective functions a: X -» / in Set, where I C A, and with mor- 
phisms from a: X -» I tor: Y -» J functions from X to Y in Set for which 
there exists an ^-definable function g such that 

commutes in Set. 

Note that PartAsm(^, A$) is a full subcategory of Asm(i4, A§), so the 
image of a partitioned assembly under the inclusion functor 

PartAsm(i4, At) 
c 

is a separated object. 

■ Asm(A, At) c > RT(A, At) 

Proposition 10.6.2. An object X of RT(A, A$) is projective iff it is iso- 
morphic to one of the form (P, «p) where, for any p,p' £ P, \p «p p'\ 
contains at most one element, and where if \p taP p\ = {a}, then also 
\p ~p p'\ — {a} for any p' such that \p «p p'\ is non-empty. 

The proof of the proposition proceeds in the appendix of [RR90, Ap- 
pendix] and uses the following lemma. 

Lemma 10.6.3. Any separated object (X,&x) in RTf^,^) is covered by 
a projective (Q,«Q) which is a subobject of {X,tzx) X (A,faA), as in the 
diagram 

(Q,~Q) 

(X,*x. 

(X,*x)x(A,txA) 

Proof. By Theorem 10.5.7, we may assume that (X, tax) is canonically sep- 
arated. Then define object (Q,taQ) where Q = {(x,a) \ x £ X and a £ 
\x «j x\ } and 

(x, a) «Q (x', a') 
{a}    if x = x' and a = a', 

0        otherwise. 

Then we have the required diagram. D 
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Corollary 10.6.4. RT(A,A$) has enough projectives: Let X be an arbitrary 
object ofRT{A,AA. Then there exists a projective P <E RT(A,A&), which 

covers X. (i.e., there is a cover P -» X). 

Proof. By the previous lemma, using that any object in RT(,4, A$) is covered 

by a separated object. □ 

Corollary 10.6.5. The full subcategory of RT(A, A$) on the projective ob- 

jects is closed under finite limits. 

Proposition 10.6.6. The full subcategory of RT(A, A$) on the projective 
objects is equivalent to the category PartAsm(J4) of partitioned assemblies. 

Theorem 10.6.7. 

1. The category Asm(A, AA is equivalent to (PartAsm(y4, AA )reg/iex. 

2. The category RT(A, AA is equivalent to (PartAsm(y4, AA )tx/itx and 

to (Asm^ij))^. 

Corollary 10.6.8.  The following objects in RT(A, AA are projective: 

1. The objects of realizers (A, EA) and (A$, E^A. 

2. The terminal object 1. 

3. Any sheaf, i.e., any object in the image of V: Set —>• RT(A,AA,. 

Since all objects in Set are projective, we can rephrase item 3 in the above 
corollary as "the functor V: Set —> RT(A, AA preserves projectives." 

Proposition 10.6.9. An object X in RT(A,AA. is projective iff it is inter- 

nally projective. 

Proof. Since 1 is projective, if X is internally projective then X is projective. 
The other direction follows from the proof of the characterization of the 
projectives, see [RR90, Appendix]. D 

We write |X| for the cardinality of a set X. The cardinality of a parti- 
tioned assembly (X, Ex) is defined to be the cardinality of X. 

The following is an easy generalization of a recent observation of Jaap 
van Oosten, who showed that the countable partitioned assemblies generate 
the effective topos. 

Proposition 10.6.10. The partitioned assemblies of cardinality less than 
or equal to \A$\ generate RT(A, AA_. 
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Proof. Since every object is covered by a projective and the partitioned 
assemblies are the projectives, it suffices to show that, for any pair of mor- 
phisms /, g: X -> Y in RT(A, A%) such that / ^ g and where A" is a parti- 
tioned assembly (\X\,EX), there exists a partitioned assembly P with car- 
dinality less than \A$\ and a map i: P -> X such that / o i ^ g o i. Suppose 
given such A', Y, /, and g and write F and G for functional relations rep- 
resenting / and <7, respectively. Then f ^ g means that 

^n f|       {F(x,y)DG(x,y))\^$. 
Ve\x\,ye\Y\ j 

Thus for each a G Ah there exists a xa £ \X\ such that a <£ C\ye\y\ (F(x> u) 3 
G(x,y)). Choose such an xa, for each a e Ah and let \P\ be the set of all 
such chosen a:a's. Let EP{x) = Ex(x). Then P = (|P|, EP) is a partitioned 
assembly with cardinality less than or equal to \Ay\ and 

4tn(       fl       {F(x,y)DG(x,y))\ ^ 0. 
\a=€|P|,y€|y| / 

Thus letting i: P -> X be the obvious inclusion map, we have that foi ^ goi, 
as required. □ 

10.7    Logical Principles 

In this section we consider the question of which of the logical principles 
discussed in constructive mathematics [TvD88] are valid. 

Recall that in any PCA, one can represent the natural numbers, see, 
e.g., [Lon94, Section 1.1.3, Page 35] for a convenient representation in terms 
of Curry numerals. Using this representation one finds that any realizability 
topos has a natural numbers object N, which is a modest set with underlying 
set the ordinary set of natural numbers and with each natural number n 
realized by the set {n}, where n is the representation of n in the PCA. 
See, e.g., [Lon94, Chapter 1] for more details. Recall that the inclusion 
A: RT(^4j) -> RT(^4, i4|j) preserves natural numbers object, as the inverse 
image of a geometric morphism. Therefore, the natural numbers object N 
in RT(J4tj), represented as just described, is also a natural numbers object 
in RT(J4,J4||). 

Proposition 10.7.1.  The internal axiom of choice 

AC(N,X)        Vn: N. 3x: X. <p(n, x) D 3f: XN. Vn: N. y{n, f{n)) 
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(for if y-> N X X any subobject of N X X) is valid in RT(,4, A$). 

Proof. Observe that N is a partitioned assembly. Therefore, by Proposi- 
tion 10.6.6, N is projective and thus, by Proposition 10.6.9, also internally 
projective, and hence AC(JV, X) is valid. The proof can carried out explicitly 
in the same manner as in [Hyl82, Section 9]. □ 

Proposition 10.7.2. Markov's principle 

MP        VÄ: PN. ((Vn. R{n) V -^R(n)) A -i-i(Bn. R(n))) D 3n. R(n) 

is valid in the internal logic of RT(A, A$). 

Proof. The proof is as in Phoa [Pho93, Page 90] (Phoa gives the proof for 
a schema, with no quantification over R, but the same proof works in our 
case). d 

Proposition 10.7.3.  The uniformity principle 

UP       Vy>(VA": PN. 3n: N. (p{X,n) D 3n: N. VA: PN. <p(X,n)) 

is valid, in the internal logic of RT(A, A$). 

Proof. The proof is as in [Hyl82, Section 15] (after noting that also Propo- 
sition 14.3 in [Hyl82] carries over to RT(^, A%)). D 

Proposition 10.7.4. The arithmetical form of Church's thesis. CT0 (see 
Definition 8.3.7) is not always valid in the internal logic ofRT(A,A$), i.e., 
there exist PCA's A and A$ such that RT(A,A$) does not validate CT0. 

Proof. Let A = P and A$ = RE, see Examples 3.1.15 and 3.1.16. Sup- 
pose RT(A,A$) = RT(P, RE) satisfies CT0. Then since the logical functor 
Q: RT(F, RE) -+ RT(P) preserves first-order arithmetic also RT(P) vali- 
dates CT0, a contradiction, see the proof of Theorem 10.3.1. D 



Chapter 11 

Conclusion and Further 
Research 

We have suggested a general notion of readability based on weakly closed 
partial cartesian categories. We have shown that any weakly closed par- 
tial cartesian category gives rise to categories of assemblies and modest sets 
which model dependent predicate logic. The framework includes both stan- 
dard realizability over partial combinatory algebras and also realizability 
over typed models, such as the category of algebraic lattices. In particular, 
the category Equ of equilogical spaces arises as modest sets over the cate- 
gory of algebraic lattices and, therefore, Equ models dependent predicate 
logic. As an application of the theory, we have detailed the interpretation 
of dependent predicate logic in Equ in concrete terms. Further, we have 
characterized when a weakly closed partial cartesian category gives rise to 
a topos; it happens just in case the weakly closed partial cartesian category 
has a universal object of which all other objects are retracts. 

We have initiated a study of the relative realizability topos RT(J4, AJJ) 

and shown that there is a localic local map of toposes from it to the stan- 
dard realizability topos RT(A, A$) over A$, for A$ a sub partial combinatory 
algebra of A. We have provided a complete axiomatization of local maps 
of toposes and studied the connection between internal logics of toposes 
connected via a local map. Moreover, we have developed a modal logic for 
local maps. Special emphasis has been given to localic local maps, which 
have been described both in terms of internal locales and in terms of local 
triposes. We have shown how the modal logic is interpreted in the relative 
realizability model RT(A,A$). An alternative view of RT(A,A$) has been 
provided by showing that it arises as an exact completion in much the same 
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way as standard readability toposes does. The double-negation topology in 
RT(J4,^ij) has been studied and the validity of a couple of logical principles 
has been established. We have observed that RT(>1) arises as a filter-quotient 
of RT(A,A$) and that the filter is given internally on that internal locale in 
RT(At) for which RT(^,^Ö) is the category of RT(.4ö)-valued sheaves. 

There are many avenues for further research. We have already mentioned 
some of them regarding the general notion of readability, see Chapters 3 
and 4. We now indicate some other directions for further research regarding 
relative realizability and local maps. 

11.1 Axioms for Local Maps of Toposes 

It would be interesting to investigate if our axioms for local maps of toposes 
could be generalized to local maps of pretoposes. This seems plausible since 
our proofs mostly use elementary exactness properties and elementary prop- 
erties of sheaves which should also hold for closure operators on pretoposes. 
Naturally, one would then also like to know how the results concerning 
logic and local maps generalizes to, say, Heyting pretoposes. Models could 
probably be found by considering realizability over WCPC-categories with 
morphisms definable via simply-typed lambda calculus. 

As already hinted at, we hope that one can also use our axioms for 
local maps as a first step towards a suitable axiomatic definition of gros 
toposes [Law86]. As a first concrete question one may ask under what extra 
axioms (besides those for local maps) does the inclusion of discrete objects 
have a left exact left adjoint? 

11.2 Logic and Local Maps of Toposes 

We have not yet begun to investigate questions of completeness for the 
modal logic for local maps. Suppose given a theory in the modal logic. A 
good question then is whether we then construct a local map of toposes such 
that the resulting model of the modal logic validates exactly the provable 
sentences of the given theory ? Of course, the same question may be asked 
for localic local maps. Other questions include:     ' 

Pred 
• When does the tripos-to-topos construction applied to    .1    yield £ ? 

We know that it does when £ is localic over DjS, but it may happen 
more generally. 
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• What can be said in general about the logic for a local map when the 
subobject classifier is open? 

11.3    Relative Realizability 

Regarding relative realizability, the most pressing next step is to explore 
some concrete models and make use of the general results established here. 
As mentioned before, Andrej Bauer is currently investigating the model 
based on the graph model and its recursive enumerable submodel, see his 

forthcoming thesis [BauOO]. 
Another interesting point of view which we have not discussed before in 

this thesis is to consider Ai — (A^ w ,4) as an internal partial combinatory 
algebra, in Set-*'. This was suggested to me by Jaap van Oosten. One can 
show, as van Oosten pointed out to me, that RT(A,A$) is equivalent to 
the topos obtained by the tripos-to-topos construction applied to the Set-*- 
tripos that results from taking the -i-i-closed subsets of the internal PCA 
Ai. The toposes RT(^4jj) and RT(,4) arise in the same way from the internal 
PCA's A0 = {A$ -» A$) and A2 = (A ->• .4) in Set"*. This viewpoint 
allows for an alternative proof of the existence of the logical functor from 
RT(^, A$) to RT(A). Pursuing this point of view a bit further, I have found 
that RT(A, A$) is an open subtopos of the realizability topos constructed 
over the internal PCA A\. (A similar result was proved by van Oosten, 
who showed that the effective topos is an open subtopos of the realizability 
topos constructed over the internal PCA (N ->■ N) in Set-*, see [v097b].) 
By taking RT(,4, A$Ys closed complement one gets a new topos, which may 
reasonably be called the modified relative realizability topos since it arises in 
the same way as the (standard) modified realizability topos arises [v097b]. 
These and other related results will be described in detail elsewhere. 



Appendix A 

Dependent Type Theory and 
Predicate Logic in Equ 

In this appendix I present the calculus of dependent type theory and predi- 
cate logic and sketch how it is modelled in Equ ~ Mod(ALat). In Chap- 
ters 3 and 4 we have already proved that Equ models dependent predicate 
logic with full dependent subset types and with quotient types (see Theo- 
rems 3.6.20, 4.1.3, 4.4.1, 4.2.1, and 4.3.1 which apply to Asm(ALat) and 
Section 3.7 which, together with the remarks on Page 90, says that the rel- 
evant results for Asm(ALat) also hold forMod(ALat).) Here we merely 
work out what the interpretation is in concrete terms. It is basically straight- 
forward to do so using the above mentioned theorems and the explanation 
in [Jac99] for how to interpret dependent type theory and predicate logic in 
DPL-structures. We have nevertheless chosen to include this treatment for 
the following reasons. First, we hope it may make the abstract treatment in 
Chapters 3 and 4 more accessible to readers not familiar with [Jac99]. In- 
deed it may be helpful to read this appendix in parallel with the treatment 
in Chapters 3 and 4. Second, we note that when one wants to use the type 
theory and logic to construct objects or prove properties about the model, 
one often needs to know what the interpretation is in concrete terms and so 
it makes sense to actually work it out. 

We describe the syntax of the dependent type theory and predicate logic 

239 
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and sketch the interpretation of it in the DPL-structure 

UFam(ALat) UFam(Mod(ALat)) —£-»■ Mod(ALat)^ 

cod 

Mod(ALat). 

In fact, to understand this appendix, it is not necessary to know what a DPL- 
structure is; it suffices to know the definitions of the categories Mod(ALat), 
UFam(Mod(ALat)) and UFam(ALat) and also the definition of the ac- 
tion of the functor {-}: UFam(Mod(ALat)) -> Mod(ALat) on objects 

(Definitions 3.7.3, 3.6.14 and 4.4.2). To make this appendix self-contained, 
however, we repeat those definitions here. 

For a set A we write PA for the powerset of A. For A an algebraic 
lattice, we do not distinguish notationally between A and its underlying- 
set. Category Mod(ALat) has as objects triples of the form (X, A, E) with 
X £ Set, A £ ALat, and E: X -> PA a function in Set satisfying that 
whenever x ^ x', we have that E(x)f\E(x') = 0. Morphisms /: (X, A, E) ->• 
(Y, B, E') are functions f: X -> Y in Set for which there exists a g £ BA 

(i.e., a continuous function from A to B in ALat) such that Va- £ X. Va £ 
E(x). g(a) £ E'(f(x)). Composition and identities are as in Set. For such 
functions E: X -> PA and E': Y ->■ PB we often write E(x) A E'(y) for 
{(a,b)\a£ £(ar)and&€ E'(y)}. 

Category UFam(Mod(ALat)) has as objects triples of the form 

(I,A,(Xi,Ei)ieXl) 

with I = (A/,A/,£7) £ Mod(ALat)'and (Xi,A,Ei) £ Mod(ALat), for 
all i £ XL A morphism (/, A, (At-, Ei)ieXl) -»• {J, B, (Y, E[)l£Xj), with 
J = (Xj, Aj, Ej), is a. pair (/, (fi)ieXl) such that f: I -> Jin Mod(ALat) 
and such that there exists a g: BAlXA satisfying 

Vi £ A7. Va,- e £■/(«). Mx £ X{. Va e ^-(a:). g(aua) £ E'm{fi{x)). 

The identity is (id, (id)ieXl) and the composition of 

(/, (/t)i€X7)        and        (g, (g3)jeXj) 

is (gfA9f(i)fi)ieXj)- 
Category UFam(ALat) has as objects pairs of the form (7, (B, if)) with 

I = (Xi[,Ai,Ei) £ Mod (ALat) and (B,<p) an equivalence class of "predi- 
cates," where B £ ALat, and tp: Xj ->■ PB in Set, with two such (B,ip) 
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and {C,ip) equivalent iff there exist continuous functions g G CAxB and 
h G BAxC such that 

Vi G A"/. Va G £/(i). Vö G <p{i). g{a,b) G V(0 

and 

V* G A/. Va G £/(*)• Vc ^ V'(0- Ma»c) € ¥>(«')■ 

A morphism w: (I,(B,ip)) ->• (J,(C,ip)) in UFam(ALat) is a morphism 
u: I -> J in Mod(ALat) for which there exists a continuous function 
5: C'-4^-6 such that 

Vi G A/. Vo G £/(i). V6 G y>(i). 5(0, &) G V»(«(0)- 

Finally, functor {-}: UFam(Mod(ALat)) ->• Mod(ALat) is defined 
as follows. On an object X — (I, A, (A,-, Ei)iexj) with J = (A/, Aj, £j), 
W = (HeA^-A, x A,E) with £(*» = £,(i) A Ei(x) = {(a,6} | 
a G £/(0 and 6 G Ei(x) }. On a morphism (/, (fi)iexj), {(/, (/OieA'j)} = 

(*».-► (/(*),/,-(*))■ 

Sequents and Their Interpretation Sequents have one of the following 
forms: 

1. T: Ctx 

2. T \- a: Type 

3. rhM: a 

4. rhM = JV:(7 

5. T h a = r: Type 

6. n-<^: Prop 

7. r 1 o h ^ 

Sequent 1 is used for context formation. A context T is interpreted as 
an object / in the base category Mod(ALat) of the DPL-structure. For 
the remainder of this paragraph suppose that T is interpreted by / = 
(A/, Ai, Ei) G Mod(ALat). Sequent 2 is for type formation. A type 
a in context F, written T \- a: Type, is interpreted as an object X = 
(I,A,(Xi,Ei)i£Xj) m UFam(Mod(ALat))/, i.e., in the fibre over I.  For 
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the remainder of this paragraph suppose that T h er: Type is interpreted 
by this X G UFam(Mod(ALat))7. Sequent 3 is for term formation. 
A term T h M: a is interpreted as a morphism 1(1) -+ X in the fibre 
UFam(Mod(ALat))7 over I. Equivalently [Jac99, Page 619], the term is 
interpreted as a section to the projection TT,\- : {X} -> I in Mod(ALat). 
Sequent 4 is conversion equality of terms; if T h M = N: a, then the 
terms V h M: a and T h N: a are interpreted as equal morphisms. Like- 
wise, sequent 5 is for type equality; if T h a = r: Type, then the types 
T r- a: Type and T \- T: Type are interpreted by the same objects in the fi- 
bre UFam(Mod(ALat))7 over I. Sequent 6 is for formation of propositions 
in context. A proposition in context T \- <p: Prop is interpreted as an object 
f in the fibre UFam(ALat))/ over I, i.e., as an equivalence class (B,<f) 
with <p: Xi ->■ PB. Note that we do not distinguish notationally between 
syntax and semantics here. We often omit the underlying algebraic lattice 
of realizers B from (B, tf) when it is clear from context. For the remainder 
of this paragraph, suppose that the proposition in context T h <f. Prop is 
interpreted by object (B,f) G UFam(ALat)7. Finally, the sequent 7 is 
for logical entailment. In T \ 9 h ip, the G is a sequence (ip1,... ,(pm) of 
propositions in context T with m > 0 (if m = 0, we write 6 = 0 and the 
interpretation is 0 = T — see below for the interpretation of T), and se- 
quent T | O h if is interpreted as (^ A • • • A fm) <i f in the fibre over I in 
UFam(ALat). Thus r | 0 h if is valid or holds iff (^ A • • • A <fm) </ <f 
in UFam(ALat)7. 

Convention A.0.1. For an object / = (A'/, A/, £» G Mod(ALat) we 
sometimes write |/| for the underlying set A/ of /. Moreover, when given 
objects X = (I, A, (Xi, Ei)i€Xl) and J = (7, B, (Yu El)i€Xl) in the category 
UFam(Mod(ALat))7, we will often omit the prime on E[ and just write y 
as (I,B, (Yi, Ei)ieXl); it will be clear from context which E{ is meant. 

We present the rules and their interpretation in the following order. 
First we cover the rules of basic dependent type theory, then the dependent 
predicate logic and finally dependent subset and quotient types. But first a 
couple of remarks concerning the conversion sequents for terms, 4, and types, 
5: We leave out the rules making term conversion and type conversion into 
congruence relations. Then the only remaining rule associated with type 
conversion is the following: 

T h M:a T\- a = r: Type 
 conversion 

Th-M: T 
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Its interpretation is trivial (the interpretation of M stays the same) since 
r h a: Type and T h r: Type are interpreted by the same semantic objects. 
This completes the description of the interpretation of the sequents for term 
conversion and type conversion; below we include the basic rules for term 
conversion. 

Rules for Context Formation    The start rule for context formation is 

0: Ctx 

which is interpreted by the terminal object 1 £ Mod(ALat). There is one 
other rule for context formation: 

F h a: Type 

(r, x: a): Ctx 

with the side-condition that x is assumed not to be bound in F (this side- 
condition is completely standard and we shall not be more precise about 
it and leave it implicit in the following). Suppose T is interpreted by 
/ = (Xi, Aj, Ei) £ Mod(ALat) and that F h a: Type is interpreted by X = 
(/, A, (Xi, Ei)iexj) e UFam(Mod(ALat))7. Then (T,x: a): Ctx is inter- 
preted as {X} £ Mod(ALat). We recall that {X} equals QJ^^ X,-, A/ X 
A, E) with E(i, x) = £/(i) A Ei{i) = { (a, b) | a £ £/(i) and b £ E(x) }. 

Structural Rules for Dependent Type Theory We now consider 
the basic structural rules of dependent type theory. The interpretation is 
straightforward, although notationally a bit messy. 

The projection rule 

r h a: Type 

r, x: a h x: a 
projection 

is interpreted as follows. Suppose T is interpreted as / = (Xi, Aj, Ej) and 
r h a: Type is interpreted as X — (I, A,(X{, E^i^Xj)- Then the term 
r, x: a V- x: a is interpreted as the morphism 

{(i,x)^iA*^x){hx)e]lt€Xixt) 

from the terminal object over {X} to y in the fibre over {X}, where y = 
{{X}, A, (Xi, EAr  v TT       v ). Equivalently, the term is interpreted as the 

section (i,x) i-> ((i,x),x) from {X} to {y} in Mod(ALat). 
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In the following, let J stand for an arbitrary expression which may occur 
on the right of a turnstile V in one of the sequents 2, 3, 4, or 5. 

We write X[A/x] for the substitution of A for x in X. It is defined in 
the usual capture-avoiding way (see, e.g., [Jac99] for details). 

The substitution rule for types 

Tr-M:a T,x:a,AhJ 

r, A[M/x] h J[M/x] 
substitution for types 

• 

• 

is interpreted as follows. To simplify the notation we will assume A = y: r 
— the more general case is not more difficult, just even more notationally 
cumbersome. There two cases, depending on the form of J. 

If J' — a'': Type and 

• T is interpreted by I = (Xj, Aj, £/) 

• r h a: Type is interpreted by A' = (7, A, (X{, Ei)ieXl) 

r h M: a is interpreted by a section M: I -> {X} in Mod(ALat) 

r, x: a V- T : Type is interpreted by 

y=({X},B,(Y(itX)lEii^))        u ) 

• F, x: a, A h a': Type is interpreted by 

Z = ({y}, C, (Zi(hx)ty), 
E((i,x),y))({ltXU)£TJ y.) 

then T, A[M/x] h J[M/x] is interpreted by 

where W = (JJiGXj yro(0, A/ X B, E) with f?(i, y) = £!7(i) A ^^(y). 

If J" = M': a' and we assume the same interpretation for the fixed 
components as above and 

• T,x: a, A h M': CT' is interpreted by a morphism from the terminal 
object over {y} to Z or equivalently a section M': {J} ->• {2} of the 
form {(i,x),y)^(((i,x),y),z{^xhy)) 
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then T, A[M/x] h J[M/x] is interpreted by the section W -)• {Z*} mapping 
(i,y) to Z(m(i),y). 

The contraction rule for types 

T,x: a,y: a, A\~ J 

T,x:a,A[x/y]hJ[x/y] 
contraction for types 

is interpreted as follows. To simplify the notation we will assume that A = 
z: T with z 7^ y. Again there are two cases, depending on the form of J. 

If J= T'': Type and 

• T is interpreted by 7 = (A"/, Ar, Ei) 

• T \- a: Type is interpreted by X = (I, A, (A',-, Ei)iexi) so that 

(F, x: a, y: a): Ctx 

is interpreted by 

y=({x},A,(xuEi)i.x)eUt€XiXt) 

• T,x: a, y: a \- T: Type is interpreted by 

Z = ({y}, B, {Z((iiX)y), E({hx)y)){(i ^  t) TJ x) 

• r, x: a, y: a, z: T h r': Type is interpreted by 

W = ({2},C, (W(((.»^0.*)' ^(((«».-0.-))(((,-,a;),a;o^)€lI((i,a)„')e.-^((i.«),»') 

then T, x: a, A[x/y] h J[x/y] is interpreted by 

(V,C, (W(((,»ia;),2), %,>),*'),*)) ((«>),*)€|v|), 

where V = {U(ix)e]]       A' %,*),*)>A' X ,4 X B, £) with £((i,z),z) = 

E^i) A Et(x) A E((i)X)tX)(z). 

If J = M: r' and we assume the same interpretation for the fixed com- 
ponents as above and 
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• r,.r: a, y: a, z: r h M: r' is interpreted by a morphism from the ter- 
minal object over {2} to W or equivalently as a section M: {2} -> 
{W} of the form (((*, x),x% z) ^ ((((i, x),x'), z), w{({iiX)^z)) 

then r,x: a, z: T h A[a;/y] h ^[a'/y] is interpreted by the section mapping 
((«, *), a) to (((*, a), 2), tü(((,-iä;)iJI.)ja)). 

The weakening rule for types 

T ha: Type ThJ 

V,x:ahJ 
weakening for types 

is interpreted as follows. 
If J = T : Type and 

• T is interpreted by 7 = (A/, Ai, Ej) 

• T h a: Type is interpreted by X = (7, A, (A",-, £,■),•£*,) 

• r h r: Type is interpreted by J = (/, B, (Yt, Ei)ieXl) 

then r, x : a h J is interpreted as 2 = ({X}, B, (y-, £,)..      TT ). 

If J = M: T and we assume the same interpretation for the fixed com- 
ponents as above and 

• r f- M: T is interpreted by a section 7 ->• {y} mapping i to (i, y,) 

then T, a;: a h .7 is interpreted as the section (i, a;) i-» ((z, x), yi): {X} -> 
{2}, where 2 is as above. 

The exchange rule for types 

r, x: a, y: r, A h J a; not free in r 

r,y:r,x: <r,A\- J 
exchange for types 

is interpreted as follows.   For notational simplicity we assume A = 0.   If 
J = r': Type and 

• T is interpreted by 7 = (A/, Aj, Ei) 

• T h a: Type is interpreted by X = (I, A, (A,-, Ei)ieXl) 

• T h r: Type is interpreted by y = (7, 5, (1-, £,•)»€*/) 
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• F, x: a, y: r h r': Type is interpreted by 

Z = (U(t»eU A',-^''C''(Z((«».!')'£'((«».!')^(«».S')G-) 

then T.y: T,X: a\~ T' : Type is interpreted by 

( U(,-lS)el].ex   V- *«> C' (%,»),*)> %,!/),z))((«\l/),*)e-) • 

If J" = M: T' the interpretation is similarly obvious. 

Having covered the basic structural rules we now go on to consider the 
different type formers and their introduction and elimination rules. 

Rules for Unit Type    The singleton (unit) type 

h 1: Type 

is interpreted as the terminal object in the fibre UFam(Mod(ALat))1 over 
the terminal object in Mod(ALat); explicitly, as the object 

(l]Vtod(ALat)) lALat, (lseti T"l)*G|l|) 

with lMod(ALat) = (lset, lALat, Ti) and Ti = Xx. {^lALaJ- 

The term 

h<>:l 

is interpreted as the identity arrow on 1 G Mod(ALat) (or, equivalently, 
as the identity arrow on 1 € UFam(Mod(ALat))1. 

The associated term conversion rule for the unit type is 

ThM: 1 

T\- M= (): 1 
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Rules for Dependent Product Types    The formation rule for depen- 
dent product 

T,x: a I- r: Type 

r h U.x: a. T: Type 

is interpreted as follows. If 

• T is interpreted by I = (A'/, Ai, Ej) 

• T\- a: Type is interpreted by X = (I, A, (A',-, Ei)i€Xl) 

• T,x: a \- T: Type is interpreted by 

y=(OT.^(^),^»)((>)6lleJf/^) 

then r h liar: a. r: Type is interpreted by Z = (7, B\ (£/,-, £f)ieA'7), where 

Ui = {f: Xi -+   U y^,,) | V.T e As. f(x)e Y(i<x) and £/'(/) / 0} 
xeXt 

and 

W) = {# G ßA | V.T e A,-. Va € ^(z). flr(a) € £(,»(/(*)) }. 

The introduction rule 

T,x: a h M: r 

T I- Xx : a. M: IIa;: a. r 

is interpreted as follows.   If T;  (r h CT: Type);  (r,x: er h r: Type); and 
(ILT : <r. r: Type) are interpreted as above and 

• r, x: a h M: r is interpreted as a morphism from the terminal object 
over {X} to y in the fibre UFam(Mod(ALat)){A,} or, equivalently, 
as a section M: {X} ->• {y} mapping (i,x) to ((i, a;), y(t>)) 

then T h Aa-: CT. M: Ila:: a. r is interpreted as the section I -> {2} (with 
Z as above) mapping i to (i, a; e Xi i->- yf,-^)). 

The elimination rule 

rhM: ILr: CT. r r r- Ar: <r 

r I- MN: r[A/x] 

is interpreted as follows.   If T;  (T h a: Type); (r,.T: a h r: Type); and 
(Ila;: a. T : Type) are interpreted as above, and 
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• r h M: Ux: a. r is interpreted as the section M: I ->• {Z} mapping 
i G -Y/ to (?', fi) 

• r h Ar: er is interpreted as the section I -» {A'} mapping / G Xj to 

then T V- MN: T[N/X] is interpreted as the section from I to {>V} given by 
i ^ {i, fi{xi)), where W = (7, B, (Y{i^t), E^Xi))iexj) 

There are the usual (ß)- and (^-conversions for dependent product types 
(we write them in a simplified form, omitting contexts etc.): 

(Xx:a. M)N = M[N/x] 

Xx: a. Mx = M 

with the usual proviso that in the (?7)-conversion the variable x is not allowed 
to occur free in M. 

Rules for Strong Dependent Sum Types    The formation rule for de- 
pendent sum 

T,x: a \- T: Type 

r \- Ex: a. T: Type 

is interpreted as follows. If 

• T is interpreted by I = (Xj, A/, Ej) 

• T h a: Type is interpreted by X = (I, A, (X,-, Ei)i^Xi) 

• r, x: a h T : Type is interpreted by 

y =({*}, B,(Y(t,x),E{hx))(hx)eU^Xt) 

then T h E.T: a. r : Type is interpreted as 

Z=(l,AxB,(Zi,El')ieXl), 

where Z = { (x, y) | x £ Xj and y G V^) }, and E['(x,y) = Ei{x) A 
E(i,x){y) = { (a, b) | a G £i(ar) and 6 G £(,»(y) }• 

The introduction rule 

F I- a: Type r, x: a \- r: Type 

T,x: a,y: T\- (x,y):Tix: a. T 
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is interpreted as follows. Suppose that T; (T h a: Type); [T,x: a h r: Type); 
and (r I- Ex: a. r: Type) are interpreted as above. Let W be the interpre- 
tation of (r, x: a,y: r): Ctx, that is, 

W = (U(hx)eU      A-, %*)> (Ai xA)xB, E) 

with E((i, x),y) = E^i) A Ei(x) A E{ttX)(y). 
Let 2* be Z "reindexed to the context T,x: a,y: r," that is, 

Z'={W,AxB,{Zi,E?){Mtmvn). 

Then r, ,r: a, y: r h (x, y): Ex: a. T is interpreted as the section 

((i,x),y)^ (((i,a:),y),(a,-,y)) 

from W to {2*}, or, equivalently, as the morphism 

(irf, (*•-> (*,y))((,»,j,)e|vr|) 

from the terminal object to Z* in the fibre over W. 

The (strong) elimination rule 

^    T,z: Ex: a. r h p: Type r, a;: a, y: T h Q : p[(a;, y)/2 

T, z: Ex: a. T\- (unpack z as (x, y) in Q): p 
(strong) 

is interpreted as follows. (The variables x and y are bound in the sum 
elimination term unpack z as (x,y) in Q.) Suppose that T; (T h a: Type); 
(T,ar: a h r: Type); and (T h Ea:: a. r: Type) are interpreted as above. 
Then (V, z: Ex: a. r): Ctx is interpreted as V = (LLGX/ Zi,ATx(AxB), E) 
with E(i, {x, y)) = £■/(») A £t-(.r) A £(4>)(y). If 

• r, z: Ea;: a. T\- p: Type is interpreted as 

V = (V,C, (V(it(Xiy)), E(i,(x,y)))(i,(x,y))e\v\) 

• r, x: a, y: r h Q: p[(x, y)/z] is interpreted as the section 

({i,x),y)^ (((*», ?),«(,■,(*,,,))) 

from W to 

{{W,C, (Vj.-.^.j,)), ^'(.■,(ar,»)))((.»,j,)e|W|)}, 

where W as above is the interpretation of (T, x: a,y: r): Ctx 
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then T,z: Ex: a. T V- (unpack z as (x,y) in Q): p is interpreted as the 

section 

(i, (x, y)) h-> ((«', (x, y)),V(it(x,y))) 

from V to {V}. 
There are the usual (/?)- and (^-conversions: 

unpack (M, Ar) as (a;, y) in Q = Q[M/x, N/y] 

unpack F as (a;, y) in Q[(.T, y)/s] = Q[P/z\. 

The strong elimination rule for sums can equivalently be formulated via 
the perhaps more familiar rules 

Th P: Ex: a. r T\- P:Ex:a. T 

T^irP:a Th7r'P:r[nP/x] 

with conversions TT{M,N) = M, TT'(M,N) = N, and (TTP, TT'P) = P. 
See [Jac99, Section 10.1] for the correspondence between the two formula- 

tions. 

Structural Rules for Dependent Predicate Logic    There are the fol- 
lowing structural rules for dependent predicate logic. 

T h V': Prop . 
 identity 

r | VH *i> 

r|0,e'r- v 

r|0hV T\-<p: Prop 

cut 

r |0,yr- V> 

r 16, <,c, <f t- ip 

r |e,<^h v 

rie,y,x,e'r-y> 
r|e,x,y,e'i-v 

weakening for propositions 

contraction for propositions 

exchange for propositions 
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T\-M:a I\ x : a, A | G h if? 
 : —— substitution for propositions 

T,A[M/x]\Q[M/x]\-il>[M/x] P 

Given what we have said before, to understand the interpretation of 
these structural rules we only need to explicate how substitution of terms for 
variables in propositions is interpreted. We go through the interpretation 
of the substitution rule for propositions in detail. Suppose for notational 
simplicity that A = (y: r). Then if 

• T is interpreted as I = (Xi, Aj, ET). 

• T h <r: Type is interpreted as X = (I, A, (Xi, Ei)i£Xl)- 

• T h A4: a is interpreted as a section / -> {X} mapping i to (i,xi). 

• (T, x: a): Ctx is interpreted as {X}. 

• T,x: a h T: Type is interpreted as 

y = ({x}, B, (y(t>), £(.»)(,>)€]7.eX/ *,.)• 

• (r, x: a, A): Ctx is interpreted as {y}. 

• T,x: a, A h 6: Prop (we here think of G as a proposition, the con- 
junction of its constituent propositions) is interpreted as the predicate 

(A@,e:\{y}\^PA@). 

• r, x: a, A h ij>: Prop is interpreted as predicate (A,/,, rp: \{y}\ ->■ PA^). 

• T r- r[M/x]: Type is interpreted as "the reindexing of y along M", 
that is, 

y* = (I, B, (Y(itXi), E^)X^)ieXl)- 

• (r, T[M/X\) : Ctx is interpreted as {J*}. 

• (r, T[M/X\) h Q[M/x]: Prop is interpreted as the reindexing of if? along 
the map (i,y) H» ((i,xt),y): {J*} ->. {J}, that is, as Q' = (i,y) H+ 

Q((*,£t),y). 



253 

• (T, T[M/X]) h il'[M/x]: Prop is interpreted as the reindexing of ip along 

the map (i,y) ^ ((i,Xi),y): {J*} -> {J}, that is, as if)' = (i,y) i-> 

and r, x: <r, A | Ö h ^ is interpreted as the inequality 6 < ^ in the fibre 
UFam(ALat){y} then T,A[M/x] \ @[M/x] h ^[M/x] is interpreted as the 

inequality 0' < ip' in UFam(ALat)r-y,i. 

Formation Rules for Propositions In the following explanation of the 
interpretation of the formation rules for propositions we always assume that 

• T: Ctx is derivable and is interpreted by I = (A"/, A/, Ej) 

• T h <p: Prop is derivable and is interpreted by (p: Xi —> P Av 

• r h if. Prop is derivable and is interpreted by the subobject tp- Xi —> 

PA4, 

For brevity, in many cases we do not show the formation of the propositions 
as formal rules. The propositions and their interpretations are described as 
follows. 

• The atomic proposition 

T\-M:a T\-N:a 

T\-{M=a N): Prop 

is interpreted as follows. Suppose that T h a: Type is interpreted 

as X — (I,A,(Xi,Ei)i£X!) and that M is interpreted as a section 
i (-»■ (i, rat): I —> {X} and that N is interpreted as a section i (->• 
(i, ni): I ->■ {X}. Then V h (M =a N): Prop is interpreted as the 
predicate Xj -> P Aj given by 

if m; = n,-, 

otherwise. 

• T r- T: Prop is interpreted by the predicate Xj >->■ FlALat given by 
i >-> {idi}. 

• T \- <f A ip- Prop is interpreted by the predicate Xi —> P(AV X A^) 

given by i i-)- <^(i) A ^(i) = { (a, a') \ a G y(i) and a' € VW }• 

• rhl: Prop is interpreted by the predicate Xj -» PlALat given by 
i^ 0. 
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• r I- <p Vip: Prop is interpreted by the predicate XT 4(SxS)xixB, 
where S is the algebraic lattice _L < T, given by 

i ^ ({(-L,T)} x <p(i) x {±4,}) U ({(T,l)} x {LAJ x Hi)) 

• r h 9 D V: Prop is interpreted by the predicate A'/ -> P((AlpYAv)) 
given by 

^{«e (A/,)^ | Va G ¥>(*')• </(a) € i'(i)}. 

• r I—«p: Prop is an abbreviation for Th^ D 1: Prop. Working out 
the interpretation according to the above we find that T I—«p: Prop 
is interpreted by the predicate Xi -> PlALat given by 

.       f0 if VW M 
{{idi}    if ^(i) = 0. 

Hence T I—^p: Prop is interpreted as 

.(0        ifv(O = 0, 
\{irf!}      if p(i) ^0. 

Under the equivalence given by Proposition 4.4.3, this is a regular sub- 
object of 7, so in Mod(ALat), the regular subobjects of I correspond 
to double-negation closed subobjects of I. 

The formation rule for the universal quantifier 

T,x: a\~ ip: Prop 

F h Vx: a. <p: Prop 

is interpreted as follows. If 

• T h o: Type is interpreted as X — (I, A, (Xi, Ei)ieXl) 

• r, x: a h (p: Prop is interpreted as a predicate LLeA- Xi -»■ FAV 

then T h Vx: a. <p: Prop is interpreted as the predicate Xi -*• F((Av)(i4j)) 
given by 

* ->   ft {3 € ((Av)(^) I Va e £•(*). ff(a) € y>(*\ *) }. 
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The formation rule for the existential quantifier 

r, x: a h p: Prop 

T 1- 3re: a. <p: Prop 

is interpreted as follows. If T; (r h a: Type); and {T,x: a \- p>: Prop) are 
interpreted as above in the description of the formation rule for universal 
quantification, then F h 3.x1: a. </>: Prop is interpreted as the predicate Xj —>■ 
P{Ai X Av) given by 

xex, 

Logical Rules for Dependent Predicate Logic The logical rules are 
shown in Figure A.l, copied from [Jac99, Section 4.1]. Note that proposi- 
tion al equality (M =a M') includes term conversion, so internal equality 
in the logic includes external equality. See [Jac99, Section 4.1] for further 
comments and for equivalent adjoint formulations of some of the rules. 

Dependent Subset Types The formation rule for dependent subset 
types 

T,x: a h (p: Prop 

r I- { x: a | ip } : Type 

is interpreted as follows. If 

• T: Ctx is interpreted by / = (Xi, Ai, Ei) 

• F \- a: Type is interpreted by X = (/, A, (X;, Ei)iexT) 

• r, re: a h <p: Prop is interpreted by predicate cp: ]J,-eXj Xi -> PAV 

then F \- { x: a \ <p> }: Type is interpreted by 

(/, Av, (Z{, Ei)ieXl) e UFam(Mod(ALat))7, 

where Z{ = { x e X{ \ <p(i, x) ^ 0 }, and Ei(x) = ip(i, re). 

The introduction rule 

r,re: a\-<p: Prop r,y:r\-M:a r, y: r \ 0 h <p[M/x] 

T,y: T\-\(M): {x: a\ip} 

is interpreted as follows. Suppose V; (T h a: Type); and (F, x: a h <p: Prop) 
are interpreted as above. If 
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r|ehT r i e, x h v 

r 10 h ^        r|e h v r|©h^AV 

r | e h y> A v r|0h^ 

r IGI-^A^ r |eh ^ 

r | 0 h ip r | © h v?vv> 

r 101- V< r | ©, ip \- x        r | e, v i- x 

r | © h <p w r | ©, 9 w i- x 

r | e, y? h v r|0hy»DV'       r | e h ^ 

r|©h^DV' r |©h v 

T, a;: cr | 0 h V T h M : (7            r | 0 h Va:: <r. V> 

r |0hVar:o-. V T | 0 h 4>[M/x] 
(x not free in 0) 

rhM:tr r|0H^[M/a] r | 0 h 3a;: <r. V        r,z: <r | ©', ^ I" X 

T | 0 h 3a;: <r. V T h 0, 0' h /Y 
(a; not free in 0',x) 

r h M = M': <r r I 0 I- M =„ Af'        T | 0 h M' =CT M" 

T | 0 h M =CT M' T | 0 h M =CT M" 

r I 0 I- M =<7 M' r I 0 (- M =CT M'       T | 0 h V[M/z] 

r I © h M' =CT M r i © h I/>[M'/X] 

Figure A.l: Logical Rules for Dependent Predicate Logic 
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• T h T : Type is interpreted as y = (I, B, (T;, E^i^x^- 

• T,y: T h a: Type is interpreted as "A' reindexed to (T,y: r): Ctx," 
that is, 

^^A-ft^M^7^ 

• r, y: r h M: a is interpreted by a section 

(i, y) ^ ((■,:, y),xM):{y}^ {A'*} 

or, equivalently, as a morphism 

(id, (y •->■ a-(i)y))iexj): 3> -> X* 

in UFam(Mod(ALat))7. 

• r, y: r h y?[M/a:]: Prop is interpreted as ip reindexed along M: {y} -» 
{A'}, that is, as 

v' = (*'» 2/) •-»• v(*> *(i,»)): LlieA'j ^ -* P-V 

• T,y: r | 0 h ^[M/z] is interpreted as an inequality T^yj. < <p' in 
UFam(ALat)r-yi. Thus there is a realizer g £ Aj X B -> Av such 
that 

V(*\y) e II,-€^^- Va e £"/(*). Vö e E(y). g(a,b) e <p'(i,y). 

then T,y: r h  i(M): {x: a  \  <p} is interpreted as the section  (i,y)  >->■ 
((i, y), a?(j>y-)) (a well-defined morphism by the existence of realizer g). 

The elimination rule 

Th N: {x:a\ <p} 

r h o(A0 : a 

is interpreted as follows.   If T; (T h cr: Type); and (T, x: <r h <p: Prop) is 
interpreted as above and 

• F \- N: {x: a \ cp} is interpreted as a section 

i i->- (i, Zi): 7 -> {(I, Av, (Zi, Ei)ieXl)} 
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then r h o(N): a is interpreted as the section i i-> (/, zi): I -» {A'}. 

The associated conversions are 

o(i(M)) = M       and        i(o(7V)) = N. 

There are the following two associated logical rules. 

T, x: a | 0, ip h V' 

r,y:{x:a\p}\G[o(y)/x]h-4io(y)/x] 

and 

T,y: {x: a \ <p] \e[o(y)/x]\- iP[o(y)/x] 

r, x : o | 0, ip h ^ 
full subset types 

Dependent Quotient Types    The formation rule for dependent quotient 
types 

r, x: a, y: a h R(x, y): Prop 

r ha/R: Type 

is interpreted as follows. If 

• T: Ctx is interpreted as 7 = (Xj, A/, £>) 

• T\- a: Type is interpreted as X — (I, A, (X,-, Ei)iexj) 

• r, a;: a, y: a h R(x, y): Prop is interpreted as a predicate J?: |{{A'}}| -» 
PA^ with 

{{*}} = (U{hx)eUteX] Xt Xit (Aj xA)xA, E) 

then r h cr/i?: Type is interpreted as 

(I,A,(Xi/^,Ei)ieXl), 

where «2- is the least equivalence relation on Xj containing ~,- with 

x ~,- a;' «=>•  i2((i,a;),a;') ^ 0, 
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and where Eftx]) = \Jxle[x]Ei(x'). 

The introduction rule 

T\-M: a 

Th[M]R:a/R 

is interpreted as follows If T and T \- a: Type are interpreted as above and 

• r h M: a is interpreted as the section i H* (?', a;,:): I —> {A'} 

then T h [M]#: <r/i? is interpreted as the section « i-> (i, [aj). 

The elimination rule 

rhr:Type r, a:: a h AT: r r,a:: a,y: a | Ä(a:,y) h Mc =T iVy 

T, a: a/R h pick x from a in Afar : r 

is interpreted as follows. Suppose that T and T h a: Type are interpreted as 
above and that 

• T h r: Type is interpreted as y = (I, B, (Yi, -E;);eAr/)- 

• r, x: a \- N: r is interpreted as the section 

(i, x) ^ ((«, a;), y(t>)): 7 -> {>'}. 

• r, x: er, y: a \ R(x, y) h Nx =T Ny is interpreted in the usual way. 

Then T, a: a/R h pick x from a in Nx: T is interpreted as the section 

(i, [x]) ^ (i, y(l- „)): {(/, A, (Xi/^Efoex,)} -> {3>}, 

where a: is a chosen representative of [x] and ((?', a;), y^,-)) is the result of 
applying the given section to (i, a;). 

The associated (/?)- and (^-conversions are 

(/?) pick a- from [M]Ä in N = N[M/x] 

(77)        pick x from <2 in N[[x]R/a] = N[Q/a]. 

In the (?7)-conversion it is assumed that x does not occur free in N. 

There is the following associated logical rule. 

T\-M:a T h M': a 

r I R(M, M') h [M]ß =<r/R [M']R 

(We do not have effective or full quotients, see Remark 4.3.2. 
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pick x from a in Nx (elimination term 

for dependent quotient type), 
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(/,«/) (object in B[p]), 116 
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discrete objects), 185 
B C A (B is a sub partial combina- 

tory algebra of A), 38 
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U (Kleene's output function), 195 
U (underlying functor £(A) -+ Ptl), 

41 
U (underlying functor ALat —>■ Ptl), 

56 
Ux  (least dense subobject of object 

X in a topos), 148 
V <d X {V is a dense subobject of 

A'), 148 
X + Y (coproduct in a category), 12 
X + Y (weak binary coproduct in a 

p-category), 57 
A' => Y (exponential of X and Y in 

a cartesian closed category), 
12 

X I, Y (/ is a morphisms from A" 
toY), 12 

A' x z Y (product of A and Y in the 
slice over Z), 19 

A ^ y (monomorphism from X to 
y), 12 
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interpreted by open subob- 
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[v?] (interpretation of ip in subobject 
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l<p}d (interpretation of ip in subobject 
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l<p]d (interpretation of <p in the sub- 
object fibration on discrete 
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[^>]m (interpretation of ip in the model 
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dent quotient type), 261 

[X —*• Z] (partial exponential of X 
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objects of topos £), 177 
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r | 6 h ip (logical entailment in con- 
text T), 243 
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graph model), 38 

A (internal locale induced by localic 
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ulo /9-equality), 38 
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15 
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topos), 177 
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OpenSubj {£) (category of open sub- 
objects of topog £ with prin- 
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Ila; : <T.T (dependent product type), 
250 

Pred (category of Djf-indexed fami- 
lies of subobjects of £), 188 

Y\ (product for comprehension cate- 
gory), 70 

II (product), 22 

Quot(A') (quotients of object A'), 157 

RT(A) (standard readability topos over 
A), 118 

RT(J4, J4|) (relative readability topos 
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indexed regular subobjects of 

Asm(Q), 93 
=> (exponential in a cartesian closed 

category), 12 
SPred(p) (category of strict predicates 

for a tripos p), 119 
Shj£ (sheaf subtopos of £ induced by 

topology j in £), 143 
Shj£[p] (sheaf subtopos of £[p] cor- 

responding to topology j on 
£-tripos p), 127 
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generic object lies), 112 
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15 
0 (context of logical assumptions), 243 
a (associated sheaf functor), 143 
J_ (falsum), 13 
J_d (falsum in subobject fibration on 

discrete objects), 185 
_Lj (falsum in closed subobject fibra- 

tion), 177 
±0 (falsum in open subobject fibra- 

tion), 180 
• (appliation in partial combinatory 

algebra), 37 
char(j4) (characteristic map of predi- 

cate A in a topos), 121 
cod (codomain functor), 15 
H (adjunction), 12 
1 (defined), 37 
(f,g) (binary tuple of maps /, g), 12 
{x,y) (coding of pairing in a PC A), 

37 
(x,y)  (pair term for dependen sum 

type), 252 
6 (diagnoal map from X to X x X for 

some object X), 12 
S (parameterized diagonal from I x X 

to (/ x X) x X), 12 
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I x X to (/ x X) x X), 12 

S(X) (diagnoal map from A' to A" x 
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12 
0 (empty context), 245 
3 (existential quantification), 13 
3d (existential quantification in sub- 

object fibration on discrete 
objects), 185 

3j (existential quantification in closed 
subobject fibration), 177 

30 (existential quantification in open 
subobject fibration), 180 

b (syntactic closure operator), 189 
V (universal quantification), 13 
Md (universal quantification in subob- 

ject fibration on discrete ob- 
jects), 185 

Vj (universal quantification in closed 
subobject fibration), 177 

V0 (universal quantification in open 
subobject fibration), 180 
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K (first coprojection into binary co- 
product), 12 

K' (second coprojection into binary co- 
product), 12 

A (functional abstraction in a partial 
combinatory algebra), 37 

\x : a. M (abstraction term (for de- 
pendent product type)), 250 

A (conjunction), 13 
Ad (conjunction in subobject fibration 

on discrete objects), 185 
Aj (conjunction in closed subobject fi- 

bration), 177 
A0 (conjunction in open subobject fi- 

bration), 180 
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on discrete objects), 185 
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V0 (disjunction in open subobject fi- 
bration), 180 

ff' (powerset of natural numbers, un- 
derlying set for the graph model), 
38 

Ptl (category of sets and partial func- 
tions), 34 

V(E) (category of vertical maps for a 
fibration with total category 
E), 95 

J-(C) (category of partitioned assem- 
blies over C), 85 
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onal to every morphism in 
V), 145 

V (subcategory of objects coorthog- 
onal to every morphism in 
V), 145 

id (identity morphism on some ob- 
ject), 12 

idx (identity morphism on object A'), 
12 

d'om / (domain of map / in a p-category), 
34 

Ev (evaluation map from Yx x X to 
Y inaCCC), 12 

CT0 (arithmetical form of Church's 
Thesis), 196 

Eq (equality for comprehension cate- 
gory), 70 

Eq (equality functor), 26 
Eqj (equality in closed subobject fi- 

bration), 177 
Eq0 (equality in open subobject fibra- 

tion), 180 
Fam7>(Sub(Asm(C))) (families of 

UFam(Asm(C))-indexed sub- 
objects of Asm(C)), 96 
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dexed along comprehension 
category V :E->-B), 95 

Fam-p(D) (category of E-indexed pred- 
icates D for a comprehension 
category V :E-)-B), 95 

Home (A", Y) (collection of morphisms 
from A' to Y in category C), 
12 

Im(/) (the image of a morphisms /), 
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MP (Markov's Principle), 235 
M(A) (monoid of ^-definable functions), 

64 
RFam (category of UFam(Asm(C) )- 

indexed subobjects of Asm(C) 
100 

RFamp(g) (fibration of RFam-p (D) over 
B for q : D ->■ B a fibration 
and V : E —> B a compre- 
hension category), 99 

RFam-p (D)   (total category of fibra- 
tion of predicates q : D —y M 
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B for comprehension category 
7>:E-»B), 99 

Split(-) (splitting 2-functor), 64 
Split(C, U) (splitting of the idempo- 

tents of C that U : C -¥ Ptl 
maps to total functions), 64 

UP (Uniformity Principle), 235 
Dp (designated truth values of tripos 

P), 113 
N (the type of natural numbers), 195 
Prop (the type of propositions), 13 
Type (the kind of types), 13 
() (unit term), 249 
i(M) (introduction term for dependent 

subset type), 257 
o(N) (elimination term for dependent 

subset type), 259 
unpack z as (x, y) in Q (elimination 

term for dependent sum type), 
252 

| (separation of type theoretic and log- 
ical context), 13 

V (functor RT(X,) -► RT(A, At)), 133 
V (functor UFam(At) -»• UFam(yl, A,), 

fibred over Set), 132 
V (inclusion functor B —>■ Asm(p)), 
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V (inclusion of codiscrete objects func- 
tor), 142 

V (internal function Q -> A), 206 
Vp (constant-objects functor for tri- 

pos p), 122 
-i (negation), 13 
-i-i (double negation topology), 225 
->d (negation in subobject fibration on 

discrete objects), 185 
-i0 (negation in open subobject fibra- 
_ tion), 180 
U (closure of subobject U in a topos 

with a topology), 148 
/ (geometric morphism of toposes in- 

duced by geometric morphism 
/ of triposes), 125 

7T (first projection for coding of pairs 
in a PCA), 37 

7T (first projection from categorical prod- 
uct), 12 

7!"' (second projection for coding of pairs 
in a PCA), 37 

ir'P (second projection of P term), 
253 

TVX (projection associated to X for 
comprehension category), 71 

wP (first projection of P term), 253 
V (comprehension category), 69 
>—»• (monomorphism), 12 
—*■ (partial function), 37 
| (syntactic interior operator), 189 
er (type (in context)), 243 
a (weak generic predicate in a tripos), 

112 
o = T (conversion of types), 243 
~ (Kleene equality), 37 
~ (equivalence of categories), 12 
D (implication), 13 
Dj (implication in closed subobject fi- 

bration), 177 
Do (implication in open subobject fi- 

bration), 180 
T (type (in context)), 243 
AC(A", A') (internal axiom of choice 

from A to A), 235 

EAC(A", Y) (external axiom of choice 
from A toY), 194 

T (fibred terminal object functor), 95 

T (truth), 13 
TJI (top element of (internal) locale 

H), 114 
Td (truth in subobject fibration on 

discrete objects), 185 
Tj  (truth in closed subobject fibra- 

tion), 177 

T0 (truth in open subobject fibration), 
180 

true (strict predicate representing the 
generic object in B[p] for a 
E-tripos p), 122 

-» (epimorphism), 12 
1= (semantic validity), 186 
if (formula), 243 
<p(M) (formula ip with M substituted 

free variable), 25 

b/ (preorder in the fibre over / in a 
tripos), 112 

{ x : a | <p } (dependent subset type), 
257 

{—} (dependent subset type functor), 
95 

{ip} (weak classifying map of predi- 
cate f in a tripos), 112 

{m} (the partial recursive function coded 
by m), 38 

/ : A —> Y (/ is a morphisms from A 
toY), 12 

/ : A DY (/ is a realizer mapping A 
into y), 38 

gof (composition of morphisms g and 

/). 12 
gf (composition of morphisms g and 

/), 12 
P-tY (first projection for a p-category), 

34 

qx,- (second projection for ap-category), 
34 

u* (substitution functor along «), 16 

F ~\ G {F is left adjoint of G), 12 



276 Index 

MN (application term (for dependent 
product type)), 250 

X T f (morphism / is coorthogonal 
to object A"), 144 

A ~ M (equivalence of categories of A 
and E), 12 

C(.4) (WCPC-category induced by ,4), 
39 

Ej (fibre category over an object / in 
a. fibration with total cate- 
gory E), 13 

E, (collection of morphisms above u 
for a fibration with total cat- 
egory E), 13 

Asxa(A,A{) (category of assemblies 
over A with respect to A{), 
227 

Asm(p) (category of assemblies over 
a regular fibration p), 43 

Asm(C) (category of assemblies over 
WCPC-category C), 73 

Equ (category of equilogical spaces), 
83 

Frames (T) (category of internal frames 
in T), 206 

LTop/J" (2-category of localic ^"-toposes), 
206 

Locales^) (2-category of internal lo- 
cales in T), 206 

M.od{A, Ai) (category of modest sets 
over A with respect to A$), 
228 

Mod(A) (category of modest sets over 
PCA A), 83 

Mod(p) (modest sets over readabil- 
ity pretripos p), 83 

Mod(C) (modest sets over WCPC- 
category Q, 83 

PER(v4, A$) (category of partial equiv- 
alence relations over A with 
respect to A$), 229 

PEK(A) (category of partial equiva- 
lence relations over ^4), 205 

PER(C) (category of partial equiva- 
lence relations over WCPC- 

cateory C), 83 
PartAsm(i4,^||)  (category of parti- 

tioned assemblies over A with 
respect to A$), 231 

Set (category of sets and total func- 
tions), 34 

UFam(J4, A%) (total category of rela- 
tive realizability tripos over 
PCA A with respect to sub- 
PCA A{ C A), 115 

UFam(y4) (total category of standard 
realizability tripos over A), 
114 

UFam(iM) (total category of stan- 
dard realizability tripos over 
PCA A), 57 

UFam(C) (category of Asm(C)-indexed 
predicates), 103 

UFam(C) (total category of realiz- 
ability pretripos over C), 51 

UFam(ALat) (total category of real- 
izability pretripos over ALat), 
73 

UFam(Asm(p)) (category of uniform 
Asm(j»)-indexed families of 
assemblies), 73 

p = B(—, E) (canonically presented 
B-tripos p on object Egl), 
113 

pi (tripos induced by local tripos p 
qua / and J), 201 

pj (tripos induced by topology J on 
tripos p), 127 

7r' (second projection from categorical 
product), 12 

<T/R (dependent quotient type), 260 
ip[M/x] (formula (p with M substi- 

tuted for x), 25 
{{—}} (functor induced by a compre- 

hension category), 98 
{—} (functor E -» IB induced by com- 

prehension category), 69 
/.LA (morphism / is orthogonal to 

object A), 144 
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M/I (slice category of B over object 
/), 15 

B[p]   (topos generated from B-tripos 

P)> 116 
B1   (the collection of all morphisms 

orthogonal to every X in B), 
144 

BT   (the collection of all morphisms 
coorthogonal to every X in 
B), 145 

B~* (arrow category of B), 14 
C{A)t (idempotent splitting of monoid 

of yl-definable functions), 39 
C(A", Y) (collection of morphisms from 

X to Y in category C), 12 
Ct (category of total maps for p-category 

C), 34 
C°p (opposite of category C), 12 

.4-definable function, 39 
A-definable partial function, 39 
additive internal function, 209 
adjoint cylinder, 142 
adjunction 

fibred, 20 
split fibred, 20 

almost monic morphism, 155 
arrow category, 14 
assemblies, 43 
associated pair (of subcategories), 145 
axioms for bounded local maps, 169 
axioms for localic local maps, 159 

base category, 14 
Beck-Chevalley condition, 21 
bounded geometric morphism, 140 

canonically modest (for double-negation 
topology), 227 

canonically presented tripos, 113 
canonically separated (for double-negation 

topology), 227 

cardinality of partitioned assembly, 233 
cartesian, 14 
cartesian lifting, 14 
cartesian over, 14 
category 

p-, 33 
(fibred)  over (a base category), 

14 
arrow, 14 
base, 14 
closed comprehension, 72 
closed partial cartesian, 35 
colocalization of, 144 
comprehension, 69 
comprehension category with unit, 

71 
coreflective, 144 
essential colocalization of, 144 
essential localization of, 144 
exact, 102 
fibre, 13 
fibred, 14 
full comprehension, 69 
indexed, 17 
left exact, 42 
lex, 42 
localization of, 144 
of assemblies, 43 
of discrete objects, 147 
of modest sets, 83 
of partial equivalence relations, 

83 
of vertical maps, 95 
partial cartesian, 34 
reflective, 144 
regular, 42 
split comprehension, 69 
split indexed, 17 
total, 14 
weakly closed partial cartesian, 

35 
change-of-base functor, 16 
Church's thesis 

arithmetical form, 196 
cleavage, 16 
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closed (for double-negation topology), 
226 

closed comprehension category, 72 
closed partial cartesian category, 35 
cloven fibration, 16 
cocomplete fibration, 23 
codense epimorphism, 153 
codiscrete object, 142 
codomain fibration, 15 
(»localization, 144 

essential, 144 
combinatory algebra 

partial, 37 
total, 37 

complete fibration, 23 
complete object, 123 
completion (of a category) 

regular, 86 
comprehension (for a fibration), 71 
comprehension category, 69 

closed, 72 
full, 69 
split, 69 
with coproducts, 71 
with products, 71 
with strong coproducts, 71 
with strong equality, 72 
with unit, 71 

computable realizer, 129 
constant object (from a tripos), 122 
context, 243 
context formation in DPL, 245 
continuous function, 38 
continuous realizer, 129 
contraction functor, 25 
conversion of terms, 243 
conversion of types, 243 
coorthogonal, 144 
coproducts 

disjoint, 81 
stable, 81 
universal, 81 

coproducts (for a comprehension cat- 
egory), 71 

coproducts (for a fibration), 22 

simple, 22 
split (simple), 23 
with Frobenius property, 24 

coreflective subcategory, 144 

D 
dense (for double-negation topology), 

226 
dependent predicate logic, 241 
dependent product, type in DPL, 250 
dependent quotient type in DPL, 260 
dependent quotient types 

effective (or full), 99 
dependent subset type in DPL, 257 
dependent subset types, 95 

full, 95 
dependent sum type in DPL, 251 
dependet quotient types, 99 
designated truth values, 113 
diagonal (for a jo-category), 34 
discrete object, 142 
disjoint coproducts, 81 
display map, 71 
domain (for a p-category), 34 
DPL-structure, 94 

E 
effective (or full) dependent quotient 

types, 99 
effective equivalence relations, 102 
epimorphism 

codense, 153 
regular, 42 

equality 
external, 26 
internal, 26 
Kleene, 37 

equality (for a fibration), 26 
very strong, 26 
with Frobenius property, 26 

equilogical spaces, 1 
equivalence relations 

effective, 102 
equivalent fibrations, 21 
essential colocalization, 144 
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exact category, 102 continuous, 38 
exact functor, 42 functional relation, 117 

■* 
exponential partial, 123 

partial, 35 functor 
weak partial, 36 change-of-base, 16 

exterior, 157 contraction, 25 
^ 

external equality, 26. exact, 42 
externally equal, 26 fibred, 19 

interior, 149 
F P, 34 

fibration, 14 pseudo, 17 
cloven, 16 pullback, 16 
cocomplete, 23 reflector, 144 
codomain, 15 regular, 42 
complete, 23 reindexing, 16 
equivalent, 21 relabelling, 16 
first-order, 9In split fibred, 19 
of subobjects, 15 substitution, 16 
regular, 43 WCPC, 36 
split, 16 weakening, 71 
split higher-order, 93n 
with (simple) equality, 26 G 
with comprehension, 71 generic object 
with full comprehension, 71 split, 93n 

fibre, 13 geometric morphism 
fibre category, 13 bounded, 140 
fibred adjunction, 20 local, 140 

split, 20 geometric morphisms of triposes, 124 
fibred category, 14 graph (of a function), 38 
fibred functor, 19 graph model, 39 

split, 19 recursively enumerable, 39 
fibred preorder, 15 Grothendieck construction, 17 
fibred structure, 19 

split, 19 H 
first-order fibration, 9In Hey ting pre-algebra, 111 
formula higher-order fibration 

negative, 178 split, 93n 
stable, 186 

L formulas of DPL, 243 I 
Frobenius property, 24 inclusion (of triposes), 128 
full comprehension (for a fibration), indexed category, 17 

o-i-vlif        1 1 71 
full comprehension category, 69 
function 

injections (for weak binary coproducts), 
58 
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interior (of subobjects), 148 
interior functor, 149 
internal equality, 26 
internal locale 

local, 206 
internally equal, 26 

K 
Kleene application, 38 
Kleene equality, 37 
Kleene's first model, 38 

lifting 

cartesian, 14 
local geometric morphism, 140 
local internal locale, 206 
local tripos, 201 
localic local map of toposes, 134 
localization, 144 

essential, 144 
logical entailment, 243 
logos, 9In 

M 
modest object, 83 
modest sets, 83 
morphism 

above, 13 
almost monic, 155 
codense epimorphism, 153 
coorthogonal, 144 
orthogonal, 144 
projection, 71 
total (in a p-category), 34 
vertical, 13 

morphisms 
display, 71 

N 
negative formula, 178 

O 
object 

above, 13 
codiscrete, 142 

complete, 123 
discrete, 142 
modest, 83 
of generators, 140 
of readers, 51, 229 
one-element, 34 
open, 151 
split generic object, 93n 
universal, 61 

weak initial, 57 
one-element object, 34 
open object, 151 
orthogonal, 144 

p-category, 33 
jp-functor, 34 
partial cartesian category, 34 

closed, 35 
weakly closed, 35 

partial combinatory algebra, 37 
graph model, 39 
Kleene's first model, 38 
recursively enumerable graph model, 

39 
sub, 38 

partial combinatory type structure, 88 
partial equivalence relations, 83 
partial exponential, 35 

weak, 36 
partial function 

',4-defmable, 39 
partial functional relation, 123 
partial order reflection, 102n 
pretripos, 50 

realizability, 51 
split, 50 

with disjunction, 50 
principal topology, 148 
product (for a p-category), 33 
products (for a comprehension cate- 

gory), 71 
products (for a fibration), 22 

simple, 22 
split (simple), 23 
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projection morphism, 71 stable coproducts, 81 
projections (for a p-category), 34 stable formula, 186 
pseudo functor, 17 standard realizability tripos, 114 

V pullback functor, 16 strict predicate, 119 
strong coproducts (for a comprehen- 

Q sion category), 71 
quotient types strong equality (for a comprehension 

V dependent, 99 category), 72 
effective (or full) dependent, 99 subobject fibration, 15 

subset types 
R (dependent), 95 

realizability pretripos, 51 full dependent, 95 
over a WCPC-category, 56 substitution functor, 16 
predicates, 51 

realizability topos, 118 T 
realizer term, 243 

computable, 129 topology- 
continuous, 129 principal, 148 

recursively enumerable graph model, topology on a tripos, 127 
39 topos 

reflective subcategory, 144 realizability, 118 
regular category, 42 relative realizability, 118 
regular completion (of a category), 86 total category, 14 
regular epimorphism, 42 total combinatory algebra, 37 
regular fibration, 43 total morphism (in a p-category), 34 
regular functor, 42 tripos, 111 
regular logic, 43 canonically presented, 113 
reindexing functor, 16 constant object, 122 
relabelling functor, 16 local, 201 
relative realizability topos, 118 on a locale, 113 
relative realizability tripos, 115 relative realizability, 115 
replete subcategory, 142 standard realizability, 114 

type, 243 
S type environment, 243 

simple coproducts (for a fibration), 22 type world, 88 
simple products (for a fibration), 22 
split comprehension category, 69 U 
split fibration, 16 unit term, 249 
split fibred adjunction, 20 unit type in DPL, 249 

i. split fibred functor, 19 universal coproducts, 81 
split fibred structure, 19 universal object, 61 
split generic object, 93n 

T split higher-order fibration, 93n V 
split indexed category, 17 vertical morphism, 13 
splitting, 16 very strong equality, 26 
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W 
WCPC-category, 36 
WCPC-functor, 36 
weak binary coproducts (for ap-category), 

57 
weak finite coproducts (for a p-category), 

58 
weak generic predicate, 112 
weak initial object, 57 
weak partial exponential, 36 
weakening functor, 71 
weakly closed partial cartesian cate- 

gory, 35 


